Semin Thromb Hemost 2021; 47(07): 759-774
DOI: 10.1055/s-0041-1727116
Review Article

Thrombin: A Pivotal Player in Hemostasis and Beyond

Julie Brogaard Larsen
1   Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
,
Anne-Mette Hvas
1   Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
2   Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
› Author Affiliations

Abstract

The serine protease thrombin, a naturally derived enzyme, plays a key role in hemostasis by converting fibrinogen to fibrin and activating coagulation factor XIII whereby the fibrin clot is stabilized. Furthermore, thrombin activates platelets through protease-activated receptors on the platelet surface. Conversely, thrombin also exerts anticoagulant effects, enhancing the protein C activity while complexed with thrombomodulin. During recent years, it has become evident that thrombin has significant effects beyond hemostasis, as it contributes also to modulation of the endothelium, promotes inflammation and angiogenesis, and plays a role in tumor progression. Yet, due to the very short half-life and almost immediate inhibition in fluid phase by antithrombin, thrombin itself remains elusive, and only indirect measurement of thrombin generation is possible. This review provides a description of structure and mechanisms of action of thrombin both in physiological and pathological processes. Furthermore, it summarizes laboratory tests that measure in vivo or ex vivo thrombin generation, and presents knowledge on the value of these biomarkers in bleeding disorders, cardiopulmonary bypass surgery, and thromboembolic risk assessment in different patient populations. Finally, this review outlines further perspectives on using thrombin generation biomarkers for research purposes and in clinical practice.



Publication History

Article published online:
21 June 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Douglas S. Coagulation history, Oxford 1951-53. Br J Haematol 1999; 107 (01) 22-32
  • 2 Owen Jr CA. H. P. Smith Award lecture: H. P. Smith's place in the history of blood coagulation. Am J Clin Pathol 1984; 81 (04) 424-426
  • 3 Andrew M, Paes B, Milner R. et al. Development of the human coagulation system in the full-term infant. Blood 1987; 70 (01) 165-172
  • 4 Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev 2007; 21 (03) 131-142
  • 5 Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apheresis Sci 2008; 38 (01) 15-23
  • 6 Rühl H, Müller J, Harbrecht U. et al. Thrombin inhibition profiles in healthy individuals and thrombophilic patients. Thromb Haemost 2012; 107 (05) 848-853
  • 7 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3 (08) 1800-1814
  • 8 Bode W. The structure of thrombin: a janus-headed proteinase. Semin Thromb Hemost 2006; 32 (Suppl. 01) 16-31
  • 9 De Caterina R, Husted S, Wallentin L. et al; European Society of Cardiology Working Group on Thrombosis Task Force on Anticoagulants in Heart Disease. General mechanisms of coagulation and targets of anticoagulants (Section I). Thromb Haemost 2013; 109 (04) 569-579
  • 10 Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 1989; 264 (09) 4743-4746
  • 11 Bouma BN, Meijers JC. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J Thromb Haemost 2003; 1 (07) 1566-1574
  • 12 Göbel K, Eichler S, Wiendl H, Chavakis T, Kleinschnitz C, Meuth SG. The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders—a systematic review. Front Immunol 2018; 9 (JUL): 1731
  • 13 Jaberi N, Soleimani A, Pashirzad M. et al. Role of thrombin in the pathogenesis of atherosclerosis. J Cell Biochem 2019; 120 (04) 4757-4765
  • 14 Cantrell R, Palumbo JS. The thrombin-inflammation axis in cancer progression. Thromb Res 2020; 191 (Suppl. 01) S117-S122
  • 15 Degen SJ, Davie EW. Nucleotide sequence of the gene for human prothrombin. Biochemistry 1987; 26 (19) 6165-6177
  • 16 Mann KG, Elion J, Butkowski RJ, Downing M, Nesheim ME. Prothrombin. Methods Enzymol 1981; 80 (Pt C): 286-302
  • 17 Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PL. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 2006; 65 (01) 19-25
  • 18 Magnusson S, Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE. Proceedings: complete primary structure of prothrombin. Partial primary structures of plasminogen and hirudin. Thromb Diath Haemorrh 1975; 34 (02) 562-563
  • 19 Butkowski RJ, Elion J, Downing MR, Mann KG. Primary structure of human prethrombin 2 and alpha-thrombin. J Biol Chem 1977; 252 (14) 4942-4957
  • 20 MacGillivray RT, Degen SJ, Chandra T, Woo SL, Davie EW. Cloning and analysis of a cDNA coding for bovine prothrombin. Proc Natl Acad Sci U S A 1980; 77 (09) 5153-5157
  • 21 Huang M, Rigby AC, Morelli X. et al. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat Struct Biol 2003; 10 (09) 751-756
  • 22 Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem 1974; 249 (19) 6347-6350
  • 23 Shen G, Cui W, Zhang H. et al. Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer. Nat Struct Mol Biol 2017; 24 (01) 69-76
  • 24 Nilsson B, Horne III MK, Gralnick HR. The carbohydrate of human thrombin: structural analysis of glycoprotein oligosaccharides by mass spectrometry. Arch Biochem Biophys 1983; 224 (01) 127-133
  • 25 Davie EW, Kulman JD. An overview of the structure and function of thrombin. Semin Thromb Hemost 2006; 32 (Suppl. 01) 3-15
  • 26 Krishnaswamy S, Church WR, Nesheim ME, Mann KG. Activation of human prothrombin by human prothrombinase. Influence of factor Va on the reaction mechanism. J Biol Chem 1987; 262 (07) 3291-3299
  • 27 Brufatto N, Nesheim ME. Analysis of the kinetics of prothrombin activation and evidence that two equilibrating forms of prothrombinase are involved in the process. J Biol Chem 2003; 278 (09) 6755-6764
  • 28 Krishnaswamy S. The transition of prothrombin to thrombin. J Thromb Haemost 2013; 11 (01, Suppl 1): 265-276
  • 29 Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost 2019; 17 (08) 1229-1239
  • 30 Friedrich R, Panizzi P, Fuentes-Prior P. et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003; 425 (6957): 535-539
  • 31 Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003; 42 (08) 827-840
  • 32 Hess K, Ajjan R, Phoenix F, Dobó J, Gál P, Schroeder V. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. PLoS One 2012; 7 (04) e35690
  • 33 Krarup A, Wallis R, Presanis JS, Gál P, Sim RB. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2007; 2 (07) e623
  • 34 Jenny L, Dobó J, Gál P, Schroeder V. MASP-1 induced clotting--the first model of prothrombin activation by MASP-1. PLoS One 2015; 10 (12) e0144633
  • 35 Krarup A, Gulla KC, Gál P, Hajela K, Sim RB. The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim Biophys Acta 2008; 1784 (09) 1294-1300
  • 36 Esmon CT, Jackson CM. The conversion of prothrombin to thrombin. III. The factor Xa-catalyzed activation of prothrombin. J Biol Chem 1974; 249 (24) 7782-7790
  • 37 Krishnaswamy S, Mann KG, Nesheim ME. The prothrombinase-catalyzed activation of prothrombin proceeds through the intermediate meizothrombin in an ordered, sequential reaction. J Biol Chem 1986; 261 (19) 8977-8984
  • 38 Haynes LM, Bouchard BA, Tracy PB, Mann KG. Prothrombin activation by platelet-associated prothrombinase proceeds through the prethrombin-2 pathway via a concerted mechanism. J Biol Chem 2012; 287 (46) 38647-38655
  • 39 Chinnaraj M, Planer W, Pozzi N. Structure of coagulation factor II: molecular mechanism of thrombin generation and development of next-generation anticoagulants. Front Med (Lausanne) 2018; 5: 281
  • 40 Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am 2007; 21 (01) 1-11
  • 41 De Caterina R, Husted S, Wallentin L. et al. Anticoagulants in heart disease: current status and perspectives. Eur Heart J 2007; 28 (07) 880-913
  • 42 Romney G, Glick M. An updated concept of coagulation with clinical implications. J Am Dent Assoc 2009; 140 (05) 567-574
  • 43 Gremmel T, Frelinger III AL, Michelson AD. Platelet physiology. Semin Thromb Hemost 2016; 42 (03) 191-204
  • 44 Kunicki TJ. Platelet glycoprotein antigens and immune receptors. Prog Clin Biol Res 1988; 283: 87-123
  • 45 De Candia E. Mechanisms of platelet activation by thrombin: a short history. Thromb Res 2012; 129 (03) 250-256
  • 46 Berndt MC, Phillips DR. Interaction of thrombin with platelets: purification of the thrombin substrate. Ann N Y Acad Sci 1981; 370: 87-95
  • 47 Brass LF, Laposata M, Banga HS, Rittenhouse SE. Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by a pertussis toxin-sensitive guanine nucleotide-binding protein. Evaluation of its contribution to platelet activation and comparisons with the adenylate cyclase inhibitory protein, Gi. J Biol Chem 1986; 261 (36) 16838-16847
  • 48 Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64 (06) 1057-1068
  • 49 Brass LF. Thrombin and platelet activation. Chest 2003; 124 (3, Suppl): 18S-25S
  • 50 Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 2000; 404 (6778): 609-613
  • 51 Nystedt S, Emilsson K, Larsson AK, Strömbeck B, Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 1995; 232 (01) 84-89
  • 52 Dorsam RT, Kim S, Jin J, Kunapuli SP. Coordinated signaling through both G12/13 and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets. J Biol Chem 2002; 277 (49) 47588-47595
  • 53 Nieswandt B, Watson SP. Platelet-collagen interaction: Is GPVI the central receptor?. Blood 2003; 102 (02) 449-461
  • 54 Sørensen B, Larsen OH, Rea CJ, Tang M, Foley JH, Fenger-Eriksen C. Fibrinogen as a hemostatic agent. Semin Thromb Hemost 2012; 38 (03) 268-273
  • 55 Dahlbäck B. Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitorα, and protein S. J Thromb Haemost 2017; 15 (07) 1241-1250
  • 56 Gabriel DA, Muga K, Boothroyd EM. The effect of fibrin structure on fibrinolysis. J Biol Chem 1992; 267 (34) 24259-24263
  • 57 Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995; 270 (24) 14477-14484
  • 58 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 1996; 271 (28) 16603-16608
  • 59 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407 (6801): 258-264
  • 60 Vergnolle N, Derian CK, D'Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol 2002; 169 (03) 1467-1473
  • 61 Lum H, Del Vecchio PJ, Schneider AS, Goligorsky MS, Malik AB. Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol (1985) 1989; 66 (03) 1471-1476
  • 62 Weksler BB, Ley CW, Jaffe EA. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest 1978; 62 (05) 923-930
  • 63 Ueno A, Murakami K, Yamanouchi K, Watanabe M, Kondo T. Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology 1996; 88 (01) 76-81
  • 64 Grandaliano G, Valente AJ, Abboud HE. A novel biologic activity of thrombin: stimulation of monocyte chemotactic protein production. J Exp Med 1994; 179 (05) 1737-1741
  • 65 Fujita T, Yamabe H, Shimada M. et al. Thrombin enhances the production of monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 in cultured rat glomerular epithelial cells. Nephrol Dial Transplant 2008; 23 (11) 3412-3417
  • 66 Gerszten RE, Garcia-Zepeda EA, Lim YC. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 398 (6729): 718-723
  • 67 Sugama Y, Tiruppathi C, Offakidevi K, Andersen TT, Fenton II JW, Malik AB. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol 1992; 119 (04) 935-944
  • 68 Rahman A, Anwar KN, True AL, Malik AB. Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J Immunol 1999; 162 (09) 5466-5476
  • 69 Zimmerman GA, McIntyre TM, Prescott SM. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J Clin Invest 1985; 76 (06) 2235-2246
  • 70 Jenkins AL, Howells GL, Scott E, Le Bonniec BF, Curtis MA, Stone SR. The response to thrombin of human neutrophils: evidence for two novel receptors. J Cell Sci 1995; 108 (Pt 9): 3059-3066
  • 71 Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21 (02) 99-111
  • 72 Wenzel UO, Fouqueray B, Grandaliano G. et al. Thrombin regulates expression of monocyte chemoattractant protein-1 in vascular smooth muscle cells. Circ Res 1995; 77 (03) 503-509
  • 73 Chieng-Yane P, Bocquet A, Létienne R. et al. Protease-activated receptor-1 antagonist F 16618 reduces arterial restenosis by down-regulation of tumor necrosis factor α and matrix metalloproteinase 7 expression, migration, and proliferation of vascular smooth muscle cells. J Pharmacol Exp Ther 2011; 336 (03) 643-651
  • 74 Huber-Lang M, Sarma JV, Zetoune FS. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12 (06) 682-687
  • 75 Amara U, Rittirsch D, Flierl M. et al. Interaction between the coagulation and complement system. Adv Exp Med Biol 2008; 632: 71-79
  • 76 Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20 (01) 34-50
  • 77 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 78 Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis 2016; 41 (01) 3-14
  • 79 Roth GA, Johnson C, Abajobir A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70 (01) 1-25
  • 80 Adelborg K, Larsen JB, Hvas AM. Disseminated intravascular coagulation: Epidemiology, biomarkers, and management. Br J Haematol 2021; 192 (05) 803-818
  • 81 Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest 2012; 122 (07) 2331-2336
  • 82 Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 2011; 8 (09) 502-512
  • 83 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359 (09) 938-949
  • 84 Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: what is the link?. Annu Rev Physiol 2011; 73: 527-545
  • 85 Johansson P, Ostrowski S. The endothelium. In: Gonzalez E, Moore H, Moore E. editors. Trauma induced coagulopathy. Cham: Springer;
  • 86 Undas A. Fibrinolysis in venous thromboembolism. Semin Thromb Hemost 2021; in press
  • 87 Iannucci J, Renehan W, Grammas P. Thrombin, a mediator of coagulation, inflammation, and neurotoxicity at the neurovascular interface: implications for Alzheimer's disease. Front Neurosci 2020; 14: 762
  • 88 Wilcox JN, Noguchi S, Casanova JR, Rasmussen ME. Extrahepatic synthesis of FVII in human atheroma and smooth muscle cells in vitro. Ann N Y Acad Sci 2001; 947: 433-438
  • 89 Nelken NA, Soifer SJ, O'Keefe J, Vu TK, Charo IF, Coughlin SR. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 1992; 90 (04) 1614-1621
  • 90 Hao JS, Zhu CJ, Yan BY, Yan CY, Ling R. Stimulation of KLF14/PLK1 pathway by thrombin signaling potentiates endothelial dysfunction in Type 2 diabetes mellitus. Biomed Pharmacother 2018; 99: 859-866
  • 91 Chung SW, Park JW, Lee SA, Eo SK, Kim K. Thrombin promotes proinflammatory phenotype in human vascular smooth muscle cell. Biochem Biophys Res Commun 2010; 396 (03) 748-754
  • 92 Borissoff JI, Joosen IA, Versteylen MO, Spronk HM, ten Cate H, Hofstra L. Accelerated in vivo thrombin formation independently predicts the presence and severity of CT angiographic coronary atherosclerosis. JACC Cardiovasc Imaging 2012; 5 (12) 1201-1210
  • 93 Vicente CP, He L, Tollefsen DM. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood 2007; 110 (13) 4261-4267
  • 94 Westrick RJ, Bodary PF, Xu Z, Shen YC, Broze GJ, Eitzman DT. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 2001; 103 (25) 3044-3046
  • 95 Borissoff JI, Otten JJ, Heeneman S. et al. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS One 2013; 8 (02) e55784
  • 96 Preusch MR, Ieronimakis N, Wijelath ES. et al. Dabigatran etexilate retards the initiation and progression of atherosclerotic lesions and inhibits the expression of oncostatin M in apolipoprotein E-deficient mice. Drug Des Devel Ther 2015; 9: 5203-5211
  • 97 Pingel S, Tiyerili V, Mueller J, Werner N, Nickenig G, Mueller C. Thrombin inhibition by dabigatran attenuates atherosclerosis in ApoE deficient mice. Arch Med Sci 2014; 10 (01) 154-160
  • 98 Reininger AJ, Bernlochner I, Penz SM. et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol 2010; 55 (11) 1147-1158
  • 99 Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 2001; 413 (6851): 74-78
  • 100 Kietsiriroje N, Ariëns RA, Ajjan R. Fibrinolysis in acute and chronic cardiovascular disease. Semin Thromb Hemost 2021; in press
  • 101 Gomes M, Khorana AA. Risk assessment for thrombosis in cancer. Semin Thromb Hemost 2014; 40 (03) 319-324
  • 102 Ebrahimi S, Rahmani F, Behnam-Rassouli R. et al. Proinflammatory signaling functions of thrombin in cancer. J Cell Physiol 2017; 232 (09) 2323-2329
  • 103 Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev 2016; 35 (02) 213-233
  • 104 Sedda S, Marafini I, Caruso R, Pallone F, Monteleone G. Proteinase activated-receptors-associated signaling in the control of gastric cancer. World J Gastroenterol 2014; 20 (34) 11977-11984
  • 105 Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Res 2011; 71 (21) 6561-6566
  • 106 Cohen I, Maoz M, Turm H. et al. Etk/Bmx regulates proteinase-activated-receptor 1 (PAR1) in breast cancer invasion: signaling partners, hierarchy and physiological significance. PLoS One 2010; 5 (06) e11135
  • 107 Kancharla A, Maoz M, Jaber M. et al. PH motifs in PAR1&2 endow breast cancer growth. Nat Commun 2015; 6: 8853
  • 108 Queiroz KC, Shi K, Duitman J. et al. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer 2014; 135 (10) 2294-2304
  • 109 Yang Y, Stang A, Schweickert PG. et al. Thrombin signaling promotes pancreatic adenocarcinoma through PAR-1-dependent immune evasion. Cancer Res 2019; 79 (13) 3417-3430
  • 110 Adams GN, Rosenfeldt L, Frederick M. et al. Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Res 2015; 75 (19) 4235-4243
  • 111 Klepfish A, Greco MA, Karpatkin S. Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. Int J Cancer 1993; 53 (06) 978-982
  • 112 Dardik R, Savion N, Kaufmann Y, Varon D. Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIA. Br J Cancer 1998; 77 (12) 2069-2075
  • 113 Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018; 131 (16) 1777-1789
  • 114 Palacios-Acedo AL, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Platelets, thrombo-inflammation, and cancer: collaborating with the enemy. Front Immunol 2019; 10: 1805
  • 115 Tsopanoglou NE, Maragoudakis ME. Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost 2004; 30 (01) 63-69
  • 116 Xu Y, Gu Y, Keep RF. et al. Thrombin up-regulates vascular endothelial growth factor in experimental gliomas. Neurol Res 2009; 31 (07) 759-765
  • 117 Hurley A, Smith M, Karpova T. et al. Enhanced effector function of CD8(+) T cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1. J Infect Dis 2013; 207 (04) 638-650
  • 118 Adams GN, Sharma BK, Rosenfeldt L. et al. Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice. J Thromb Haemost 2018; 16 (11) 2258-2269
  • 119 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26) 1650-1659
  • 120 Steinbrecher KA, Horowitz NA, Blevins EA. et al. Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 2010; 70 (07) 2634-2643
  • 121 Mann KG. Thrombin formation. Chest 2003; 124 (3, Suppl): 4S-10S
  • 122 MacFarlane RG, Biggs R. A thrombin generation test; the application in haemophilia and thrombocytopenia. J Clin Pathol 1953; 6 (01) 3-8
  • 123 Hemker HC, Willems GM, Béguin S. A computer assisted method to obtain the prothrombin activation velocity in whole plasma independent of thrombin decay processes. Thromb Haemost 1986; 56 (01) 9-17
  • 124 Hemker HC, Wielders S, Kessels H, Béguin S. Continuous registration of thrombin generation in plasma, its use for the determination of the thrombin potential. Thromb Haemost 1993; 70 (04) 617-624
  • 125 Hemker HC, Giesen PL, Ramjee M, Wagenvoord R, Béguin S. The thrombogram: monitoring thrombin generation in platelet-rich plasma. Thromb Haemost 2000; 83 (04) 589-591
  • 126 Berntorp E, Salvagno GL. Standardization and clinical utility of thrombin-generation assays. Semin Thromb Hemost 2008; 34 (07) 670-682
  • 127 Lippi G, Salvagno GL, Montagnana M, Guidi GC. Reliability of the thrombin-generation assay in frozen-thawed platelet-rich plasma. Clin Chem 2006; 52 (09) 1827-1828
  • 128 Ninivaggi M, Apitz-Castro R, Dargaud Y, de Laat B, Hemker HC, Lindhout T. Whole-blood thrombin generation monitored with a calibrated automated thrombogram-based assay. Clin Chem 2012; 58 (08) 1252-1259
  • 129 Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem 2016; 62 (05) 699-707
  • 130 Dargaud Y, Wolberg AS, Gray E, Negrier C, Hemker HC. Subcommittee on Factor VIII, Factor IX, and Rare Coagulation Disorders. Proposal for standardized preanalytical and analytical conditions for measuring thrombin generation in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost 2017; 15 (08) 1704-1707
  • 131 Tarandovskiy ID, Balandina AN, Kopylov KG. et al. Investigation of the phenotype heterogeneity in severe hemophilia A using thromboelastography, thrombin generation, and thrombodynamics. Thromb Res 2013; 131 (06) e274-e280
  • 132 Hemker HC, Kremers R. Data management in thrombin generation. Thromb Res 2013; 131 (01) 3-11
  • 133 Shibeko AM, Woodle SA, Lee TK, Ovanesov MV. Unifying the mechanism of recombinant FVIIa action: dose dependence is regulated differently by tissue factor and phospholipids. Blood 2012; 120 (04) 891-899
  • 134 Woodle SA, Shibeko AM, Lee TK, Ovanesov MV. Determining the impact of instrument variation and automated software algorithms on the TGT in hemophilia and normalized plasma. Thromb Res 2013; 132 (03) 374-380
  • 135 Pelzer H, Schwarz A, Heimburger N. Determination of human thrombin-antithrombin III complex in plasma with an enzyme-linked immunosorbent assay. Thromb Haemost 1988; 59 (01) 101-106
  • 136 Pelzer H, Schwarz A, Stüber W. Determination of human prothrombin activation fragment 1 + 2 in plasma with an antibody against a synthetic peptide. Thromb Haemost 1991; 65 (02) 153-159
  • 137 Wexels F, Seljeflot I, Pripp AH, Dahl OE. D-Dimer and prothrombin fragment 1 + 2 in urine and plasma in patients with clinically suspected venous thromboembolism. Blood Coagul Fibrinolysis 2016; 27 (04) 396-400
  • 138 Wexels F, Dahl OE, Pripp AH, Seljeflot I. Thrombin generation in patients with suspected venous thromboembolism. Clin Appl Thromb Hemost 2017; 23 (05) 416-421
  • 139 Santagostino E, Mancuso ME, Tripodi A. et al. Severe hemophilia with mild bleeding phenotype: molecular characterization and global coagulation profile. J Thromb Haemost 2010; 8 (04) 737-743
  • 140 Dargaud Y, Lienhart A, Negrier C. Prospective assessment of thrombin generation test for dose monitoring of bypassing therapy in hemophilia patients with inhibitors undergoing elective surgery. Blood 2010; 116 (25) 5734-5737
  • 141 Takeyama M, Nogami K, Matsumoto T, Noguchi-Sasaki M, Kitazawa T, Shima M. An anti-factor IXa/factor X bispecific antibody, emicizumab, improves ex vivo coagulant potentials in plasma from patients with acquired hemophilia A. J Thromb Haemost 2020; 18 (04) 825-833
  • 142 Ogiwara K, Nogami K, Matsumoto N. et al. A modified thrombin generation assay to evaluate the plasma coagulation potential in the presence of emicizumab, the bispecific antibody to factors IXa/X. Int J Hematol 2020; 112 (05) 621-630
  • 143 Kizilocak H, Marquez-Casas E, Phei Wee C, Malvar J, Carmona R, Young G. Comparison of bypassing agents in patients on emicizumab using global hemostasis assays. Haemophilia 2020; 27 (01) 164-172
  • 144 Modrau IS, Halle DR, Nielsen PH. et al. Impact of minimally invasive extracorporeal circulation on coagulation-a randomized trial. Eur J Cardiothorac Surg 2020; 57 (06) 1145-1153
  • 145 Farneti PA, Sbrana S, Spiller D. et al. Reduction of blood coagulation and monocyte-platelet interaction following the use of a minimal extracorporeal circulation system (Synergy) in coronary artery bypass grafting (CABG). Perfusion 2008; 23 (01) 49-56
  • 146 Wippermann J, Albes JM, Hartrumpf M. et al. Comparison of minimally invasive closed circuit extracorporeal circulation with conventional cardiopulmonary bypass and with off-pump technique in CABG patients: selected parameters of coagulation and inflammatory system. Eur J Cardiothorac Surg 2005; 28 (01) 127-132
  • 147 Gruzdeva O, Uchasova E, Fanaskova E. et al. Use of thrombin generation test for monitoring hemostasis in coronary bypass surgery. Clin Hemorheol Microcirc 2017; 66 (01) 57-66
  • 148 Moorlag M, Schurgers E, Krishnamoorthy G. et al. Near-patient thrombin generation in patients undergoing elective cardiac surgery. J Appl Lab Med 2017; 1 (06) 613-625
  • 149 Bosch Y, Al Dieri R, ten Cate H. et al. Preoperative thrombin generation is predictive for the risk of blood loss after cardiac surgery: a research article. J Cardiothorac Surg 2013; 8: 154
  • 150 Bosch YP, Al Dieri R, ten Cate H. et al. Measurement of thrombin generation intra-operatively and its association with bleeding tendency after cardiac surgery. Thromb Res 2014; 133 (03) 488-494
  • 151 Coakley M, Hall JE, Evans C. et al. Assessment of thrombin generation measured before and after cardiopulmonary bypass surgery and its association with postoperative bleeding. J Thromb Haemost 2011; 9 (02) 282-292
  • 152 Verhovsek M, Douketis JD, Yi Q. et al. Systematic review: D-dimer to predict recurrent disease after stopping anticoagulant therapy for unprovoked venous thromboembolism. Ann Intern Med 2008; 149 (07) 481-490 , W94
  • 153 Bruinstroop E, Klok FA, Van De Ree MA, Oosterwijk FL, Huisman MV. Elevated D-dimer levels predict recurrence in patients with idiopathic venous thromboembolism: a meta-analysis. J Thromb Haemost 2009; 7 (04) 611-618
  • 154 Douketis J, Tosetto A, Marcucci M. et al. Patient-level meta-analysis: effect of measurement timing, threshold, and patient age on ability of D-dimer testing to assess recurrence risk after unprovoked venous thromboembolism. Ann Intern Med 2010; 153 (08) 523-531
  • 155 Lundbech M, Krag AE, Christensen TD, Hvas AM. Thrombin generation, thrombin-antithrombin complex, and prothrombin fragment F1+2 as biomarkers for hypercoagulability in cancer patients. Thromb Res 2020; 186: 80-85
  • 156 Ay C, Vormittag R, Dunkler D. et al. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2009; 27 (25) 4124-4129
  • 157 Ay C, Dunkler D, Simanek R. et al. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2011; 29 (15) 2099-2103
  • 158 Kitayama H, Kondo T, Sugiyama J. et al. Venous thromboembolism in hospitalized patients receiving chemotherapy for malignancies at Japanese community hospital: prospective observational study. BMC Cancer 2017; 17 (01) 351
  • 159 Lebreton A, Sinegre T, Lecompte T, Talon L, Abergel A, Lisman T. Thrombin generation and cirrhosis: state of the art and perspectives. Semin Thromb Hemost 2020; 46 (06) 693-703
  • 160 Chaireti R, Rajani R, Bergquist A. et al. Increased thrombin generation in splanchnic vein thrombosis is related to the presence of liver cirrhosis and not to the thrombotic event. Thromb Res 2014; 134 (02) 455-461
  • 161 Cheng Y, Liu J, Su Y. et al. Clinical impact of coagulation and fibrinolysis markers for predicting postoperative venous thromboembolism in total joint arthroplasty patients. Clin Appl Thromb Hemost 2019; 25: 1076029619877458
  • 162 Lee SY, Niikura T, Iwakura T, Sakai Y, Kuroda R, Kurosaka M. Thrombin-antithrombin III complex tests. J Orthop Surg (Hong Kong) 2017; 25 (01) 170840616684501
  • 163 Billoir P, Duflot T, Fresel M, Chrétien MH, Barbay V, Le Cam Duchez V. Thrombin generation profile in non-thrombotic factor V Leiden carriers. J Thromb Thrombolysis 2019; 47 (03) 473-477
  • 164 Lincz LF, Lonergan A, Scorgie FE. et al. Endogenous thrombin potential for predicting risk of venous thromboembolism in carriers of factor V Leiden. Pathophysiol Haemost Thromb 2006; 35 (06) 435-439
  • 165 van Hylckama Vlieg A, Baglin CA, Luddington R, MacDonald S, Rosendaal FR, Baglin TP. The risk of a first and a recurrent venous thrombosis associated with an elevated D-dimer level and an elevated thrombin potential: results of the THE-VTE study. J Thromb Haemost 2015; 13 (09) 1642-1652
  • 166 Eichinger S, Heinze G, Jandeck LM, Kyrle PA. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model. Circulation 2010; 121 (14) 1630-1636
  • 167 Tripodi A, Legnani C, Chantarangkul V, Cosmi B, Palareti G, Mannucci PM. High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thromb Haemost 2008; 6 (08) 1327-1333
  • 168 Sonnevi K, Tchaikovski SN, Holmström M, Rosing J, Bremme K, Lärfars G. Thrombin generation and activated protein C resistance in the absence of factor V Leiden correlates with the risk of recurrent venous thromboembolism in women aged 18-65 years. Thromb Haemost 2011; 106 (05) 901-907
  • 169 Besser M, Baglin C, Luddington R, van Hylckama Vlieg A, Baglin T. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J Thromb Haemost 2008; 6 (10) 1720-1725
  • 170 Szczeklik A, Dropinski J, Radwan J, Krzanowski M. Persistent generation of thrombin after acute myocardial infarction. Arterioscler Thromb 1992; 12 (05) 548-553
  • 171 Becker RC, Bovill EG, Corrao JM. et al. Dynamic nature of thrombin generation, fibrin formation, and platelet activation in unstable angina and non-Q-wave myocardial infarction. J Thromb Thrombolysis 1995; 2 (01) 57-64
  • 172 Rho R, Tracy RP, Bovill EG, Ball SP, Becker RC. Plasma markers of procoagulant activity among individuals with coronary artery disease. J Thromb Thrombolysis 1995; 2 (03) 239-243
  • 173 Granger CB, Becker R, Tracy RP. et al. Thrombin generation, inhibition and clinical outcomes in patients with acute myocardial infarction treated with thrombolytic therapy and heparin: results from the GUSTO-I trial. GUSTO-I Hemostasis Substudy Group. Global Utilization of Streptokinase and TPA for Occluded Coronary Arteries. J Am Coll Cardiol 1998; 31 (03) 497-505
  • 174 Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ. Hemostatic function and progressing ischemic stroke: D-dimer predicts early clinical progression. Stroke 2004; 35 (06) 1421-1425
  • 175 Di Tullio MR, Homma S, Jin Z, Sacco RL. Aortic atherosclerosis, hypercoagulability, and stroke the APRIS (Aortic Plaque and Risk of Ischemic Stroke) study. J Am Coll Cardiol 2008; 52 (10) 855-861
  • 176 Feinberg WM, Pearce LA, Hart RG. et al. Markers of thrombin and platelet activity in patients with atrial fibrillation: correlation with stroke among 1531 participants in the stroke prevention in atrial fibrillation III study. Stroke 1999; 30 (12) 2547-2553
  • 177 Smid M, Dielis AW, Spronk HM. et al. Thrombin generation in the Glasgow Myocardial Infarction Study. PLoS One 2013; 8 (06) e66977
  • 178 Schneider JG, Isermann B, Kleber ME. et al. Inverse association of the endogenous thrombin potential (ETP) with cardiovascular death: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Int J Cardiol 2014; 176 (01) 139-144
  • 179 van Paridon PCS, Panova-Noeva M, van Oerle R. et al. Thrombin generation in cardiovascular disease and mortality - results from the Gutenberg Health Study. Haematologica 2020; 105 (09) 2327-2334
  • 180 Carcaillon L, Alhenc-Gelas M, Bejot Y. et al. Increased thrombin generation is associated with acute ischemic stroke but not with coronary heart disease in the elderly: the Three-City cohort study. Arterioscler Thromb Vasc Biol 2011; 31 (06) 1445-1451
  • 181 Loeffen R, Winckers K, Ford I. et al; PROSPER Study Group. Associations between thrombin generation and the risk of cardiovascular disease in elderly patients: results from the PROSPER Study. J Gerontol A Biol Sci Med Sci 2015; 70 (08) 982-988
  • 182 Helms J, Tacquard C, Severac F. et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46 (06) 1089-1098
  • 183 White D, MacDonald S, Edwards T. et al. Evaluation of COVID-19 coagulopathy; laboratory characterization using thrombin generation and nonconventional haemostasis assays. Int J Lab Hematol 2021; 43 (01) 123-130
  • 184 Ranucci M, Sitzia C, Baryshnikova E. et al. COVID-19-associated coagulopathy: biomarkers of thrombin generation and fibrinolysis leading the outcome. J Clin Med 2020; 9 (11) E3487
  • 185 Blasi A, von Meijenfeldt FA, Adelmeijer J. et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost 2020; 18 (10) 2646-2653
  • 186 Benati M, Salvagno GL, Nitto S. et al. Thrombin generation in patients with coronavirus disease 2019. Semin Thromb Hemost 2021; 47 (04) 447-450
  • 187 Chistolini A, Ruberto F, Alessandri F. et al; Policlinico Umberto I COVID-19 Group. Effect of low or high doses of low-molecular-weight heparin on thrombin generation and other haemostasis parameters in critically ill patients with COVID-19. Br J Haematol 2020; 190 (04) e214-e218
  • 188 Bouck EG, Denorme F, Holle LA. et al. COVID-19 and sepsis are associated with different abnormalities in plasma procoagulant and fibrinolytic activity. Arterioscler Thromb Vasc Biol 2021; 41 (01) 401-414
  • 189 Nougier C, Benoit R, Simon M. et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-COV2 associated thrombosis. J Thromb Haemost 2020; 18 (09) 2215-2219
  • 190 Lutsey PL, Folsom AR, Heckbert SR, Cushman M. Peak thrombin generation and subsequent venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology (LITE) study. J Thromb Haemost 2009; 7 (10) 1639-1648
  • 191 Haider AW, Andreotti F, Thompson GR, Kluft C, Maseri A, Davies GJ. Serum lipoprotein(a) level is related to thrombin generation and spontaneous intermittent coronary occlusion in patients with acute myocardial infarction. Circulation 1996; 94 (09) 2072-2076
  • 192 Smid M, Dielis AW, Winkens M. et al. Thrombin generation in patients with a first acute myocardial infarction. J Thromb Haemost 2011; 9 (03) 450-456
  • 193 Elad B, Koren O, Slim W. et al. Thrombin generation's role in predicting coronary disease severity. PLoS One 2020; 15 (08) e0237024