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Summary
Objectives: We survey recent work in biomedical NLP on building 
more adaptable or generalizable models, with a focus on work 
dealing with electronic health record (EHR) texts, to better 
understand recent trends in this area and identify opportunities 
for future research. 
Methods: We searched PubMed, the Institute of Electrical and 
Electronics Engineers (IEEE), the Association for Computational 
Linguistics (ACL) anthology, the Association for the Advancement 
of Artificial Intelligence (AAAI) proceedings, and Google Scholar 
for the years 2018-2020. We reviewed abstracts to identify the 
most relevant and impactful work, and manually extracted data 
points from each of these papers to characterize the types of 
methods and tasks that were studied, in which clinical domains, 
and current state-of-the-art results. 
Results: The ubiquity of pre-trained transformers in clinical 
NLP research has contributed to an increase in domain adap-
tation and generalization-focused work that uses these mod-
els as the key component. Most recently, work has started to 
train biomedical transformers and to extend the fine-tuning 
process with additional domain adaptation techniques. We 

also highlight recent research in cross-lingual adaptation, as 
a special case of adaptation. 
Conclusions: While pre-trained transformer models have led 
to some large performance improvements, general domain 
pre-training does not always transfer adequately to the clinical 
domain due to its highly specialized language. There is also 
much work to be done in showing that the gains obtained by 
pre-trained transformers are beneficial in real world use cases. 
The amount of work in domain adaptation and transfer learning 
is limited by dataset availability and creating datasets for new 
domains is challenging. The growing body of research in lan-
guages other than English is encouraging, and more collabora-
tion between researchers across the language divide would likely 
accelerate progress in non-English clinical NLP.
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1   Introduction
The text in electronic health records (EHRs) 
contains a wealth of information about the 
status of patients that is not contained in any 
other source. Natural language processing 
(NLP) is the sub-field of artificial intelligence 
concerned with machine understanding of 
language, and NLP methods have long been 
promised as a solution to making text infor-
mation in EHRs usable for downstream tasks.

Most modern NLP methods take advan-
tage of supervised machine learning, where 
representative datasets must be manually 
labeled with medico-linguistic annotations 
in order to train NLP systems. Recent years 
have seen an increase in the availability of 
clinical texts annotated for such informa-
tion. Clinical datasets have been publicly 
released for standard NLP tasks such as 
named entity recognition (NER) and rela-
tion extraction [1, 2], temporal information 

extraction [3, 4], coreference resolution [5], 
as well as datasets for directly addressing 
tasks of clinical interest such as disease 
classification [6], heart disease risk fac-
tors [7], and text de-identification [8]. In 
addition, the Medical Information Mart for 
Intensive Care - III (MIMIC) [9] project has 
enabled accessing a large and continually 
growing set of de-identified EHR notes from 
an intensive care unit, creating a resource 
suitable for methods that require “big data” 
(e.g., self-supervised pre-training).

While this increase in availability has 
encouraged clinical NLP methods devel-
opment, a key question is whether the 
reported gains in performance reflect true 
improvements that will generalize to new 
data. This question is difficult to answer 
because it seemingly requires that we 
have multiple datasets for each problem 
of interest, when it is already diff icult 
to create even a single dataset. However, 
the alternative is that we do not know if 
these systems generalize until we attempt 
to apply them to real problems. If they do 
not generalize well, we still end up needing 
to do additional annotations and method 
development for each dataset. 

These are the issues that we address in 
this survey. Specifically, we delve into the 
topics of generalizability and adaptability. 
Generalizability refers to the ability of a 
method to extrapolate from limited training 
data in a way that allows it to perform well on 
diverse test data that may differ in non-trivial 
ways from the training data. Adaptability, 
on the other hand, refers to the potential of 
methods to take some initially trained model 
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and make it especially suited for the type 
of data it will run on at test time. They are 
not mutually exclusive — training a more 
generalizable model is desirable even if 
one adapts it to test data eventually — but 
they may represent competing priorities in 
research directions.

Transfer learning is the foundation of 
many of the recent developments in both 
adaptable and generalizable methods. In 
this paradigm (Figure 1), knowledge from 
tasks, domains or even languages where 
more data is available is applied to tasks, 
domains, or languages where data is scarce.
We review the 2018-2020 literature on the 
clinical application of different transfer 
learning settings, including domain-to-do-
main (domain adaptation), task-to-task 
(inductive transfer learning) and lan-
guage-to-language (cross-lingual learning) 
(see Figure 2 for a graphical depiction of 
this taxonomy). Due to their unprecedented 
achievements in NLP [10], we give special 
attention to pre-trained transformers, a 
family of models that are first trained to 
solve general problems in vast amounts of 
unlabeled data and subsequently fine-tuned 
in downstream tasks.

Our f indings are that, although pre-
trained transformers start to dominate 
clinical NLP, they are still not optimized for 
biomedical data, and applying domain adap-
tation techniques on top of these models is 
still relatively unexplored. The field benefits 
from the large MIMIC-III [9] dataset but 
is limited by all the largest methods being 
trained on one particular source of data. 
Finally, there is an encouraging amount of 
work on non-English languages, but more 
could be done to leverage knowledge gained 
on English to other languages.

2   Methods
We searched the digital libraries of PubMed, 
the Institute of Electrical and Electronics 
Engineers (IEEE), the Association for 
Computational Linguistics (ACL) anthology, 
and the Association for the Advancement of 
Artificial Intelligence (AAAI) proceedings 
for publications from 2018-2020 whose titles 
or abstracts matched the following query:

Fig. 1   Illustration of the logic of transfer learning techniques. Adapted from McGuinness [60].

Fig. 2   A taxonomy of generalization and adaptation approaches. Adapted from Ruder [61].

	 (domain adaptation OR transfer learning 
OR generalizability) AND (((medical OR 
biomedical OR clinical) AND (text OR 
language)) OR electronic health record)

For the cross-lingual work, we extracted a 
seed set of articles by using Google Scholar’s 
“Cited by” feature to look up articles that 

cited a recent survey of clinical NLP works 
in non-English languages [11]. We reviewed 
titles and abstracts for relevance, then read 
full-text of selected articles to understand the 
work and pull out certain pieces of informa-
tion (Methods, Tasks, Domains, Languages, 
Results, and Reproducibility). We also re-
viewed citations in the full-text articles and 
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added any relevant work that was not already 
covered by our earlier searches. We referred 
to arXiv preprints for those cases where a 
peer-reviewed publication was not available. 
Our search resulted in 87 references that were 
reduced to 55 after the manual filtering.

3   Results
Table 1 shows a high-level quantitative sum-
mary of the results of our literature survey.

3.1   Domain Adaptation
A major concern of supervised machine 
learning (ML) is the lack of robustness under 
domain shift, especially when labelled data is 
scarce or difficult to obtain. Two recent works, 
on biomedical relation extraction [12], and 
psychiatric salient risk indicator prediction 
[13], showed large drops in out-of-domain 
performance and concluded that the in-domain 
data was insufficient. Domain adaptation, 
or transductive transfer learning, provides a 
framework to address this problem by trans-
ferring the knowledge acquired from a source 
domain to a target domain for a particular task.

Among the variety of domain adaptation 
approaches, some focus more on selecting 
or augmenting target-domain related data. 
For example, one work [14] pruned and 
weighted instances from the source domain 
to adapt a conditional random field (CRF) 
for the de-identification of psychiatric notes. 
However, a larger number of works focus 
on transferring or combining the model pa-
rameters trained in different domains. One 
approach applied an ensemble of classifiers 
for auxiliary diagnosis trained on multiple 
domains that were combined using mutual 
information [15], while another trained a 
CRF for NER on nursing handover data by 
adapting the outputs of another CRF trained 
on the general medical domain [16]. The 
models can also be trained jointly, as shown 
in the work that developed an architecture for 
NER on EHRs with a shared Bi-LSTM and 
domain specific CRFs [17]. Another method, 
called adversarial domain adaptation [18], has 
been one of the best-performing techniques 
for deep learning architectures. In this ap-
proach, an additional domain discriminator 

is trained together with the target task. In one 
application of this approach, it was applied on 
a Bi-LSTM for disease phrase matching [19]. 
Domain adaptation has also been applied on 
speech recognition (SR) for doctor-patient 
conversations [20], by approaching the 
problem as a machine-translation task, from 
source to target domain, to correct errors 
made by off-the-shelf systems.

3.2   Multi-Task
Inductive transfer is an alternative family of 
techniques that share learned representations 
between different, although usually related, 
tasks. In the multi-task setting, models are 
trained in multiple tasks at the same time, 
generally with specific loss functions. This 
approach was applied in the clinical domain 
[21], by training a Bi-LSTM jointly in Speech 
Tagging and NER to improve the latter in Chi-
nese EHRs. One participant in the MediQA 
2019 challenge [22] combined sentence 
classification, pairwise text classification, text 
similarity and relevance ranking along with 
the challenge’s natural language inference 
task [23]. Multi-task transfer can also be 
applied for domain adaptation. One approach 
developed a Bi-LSTM for word segmentation 
on Chinese medical text, where the main task 
was trained jointly with an adaptive loss to 
minimize the distance between the hidden 
representations of the different domains [24].

3.3   Sequential Transfer
In the clinical domain, inductive transfer 
has been applied by training different tasks 
sequentially. A system pre-trained a convo-

lutional neural network (CNN) for medical 
subject heading identification on PubMed 
indexed biomedical articles and transferred 
this model to the prediction of International 
Classification of Diseases (ICD) codes in 
EHRs [25]. A related approach started from 
a small set of labeled data, and combined 
self-training and transfer learning for radiol-
ogy report classification, leveraging unlabeled 
data across three different institutions [26].

A common practice consists in trans-
ferring pre-trained word embeddings to 
downstream tasks, for example, by training 
medical-specific embeddings and applying 
them to NER [27]. Several techniques, from 
concatenation to fine-tuning, have been 
explored to adapt embeddings, trained on 
both general and medical domains [28]. One 
approach pre-trained embeddings on the 
relation extraction task of the Informatics 
for Integrating Biology & the Bedside (i2b2) 
2009 challenge [29] and fed them to neural 
networks (NNs) for medical term extraction 
in the same corpus [30].

3.4   Approaches Using Pre-trained 
Transformers
Contextual word embeddings like Embed-
dings from Language Model (ELMo) [31] 
or Bidirectional Encoder Representations 
from Transformers (BERT) [10] have dra-
matically improved the performance of NLP 
tasks. While rule-based or classic statistical 
approaches still remain prevalent in clinical 
NLP [32], general domain transformers 
have recently been applied for various tasks 
including concept extraction, question an-
swering, or relation extraction [33–36]. 

Table 1   Summary of quantitative results of our literature survey.

Main Language

English
Chinese
Spanish
Russian
German
other

Medical domains

generic	
radiology
cancer	
psychiatry	
other

Methods

transformer based
Bi-LSTM/RNN/CNN
statistical (SVM...)
other

Reproducibility

data and code	
only data	
other	

32
6
5
2
2
7

20
14

5
15

41
2
2
2
7

11
22
21
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Many studies use off-the-shelf BERT 
models [10] pre-trained on general corpora 
with BooksCorpus [37] and English Wiki-
pedia. Domain adaptation is then carried out 
by fine-tuning the pre-trained model on the 
task-specific dataset. This effective transfer 
learning method, which does not involve any 
model pre-training, achieved results on par 
with state-of-the-art at the time of publication.

In an effort to tackle linguistic character-
istic differences between general and bio-
medical domains, several contextual models 
such as BioBERT [38] were pre-trained on 
medical literature (PubMed and PMC articles) 
atop BERT, and made publicly available. 
When fine-tuned on a downstream task, these 
generally showed in-line or improved perfor-
mance compared to general domain models, 
albeit not across all tasks (38,39). Going one 
step further to incorporate the specificities of 
EHR language (misspellings, abbreviations), 
various clinically-oriented BERT models, 
such as clinicalBERT [39], medBERT [40] or 
BEHRT [41], pre-trained on clinical records, 
were recently released. These models were 
shown to outperform non-clinical ones on a 
variety of shared clinical NLP tasks [33, 42]. 

However, EHR models do not always out-
perform biomedical ones, notably for de-iden-
tification tasks [39]. Furthermore, combining 
biomedical and EHR texts to pre-train con-
textual models can increase performance, 
specifically when tested on out-domain data 
[43]. Consequently, enriching BERT with 
specific as well as less specific data could 
potentially improve the generalizability and 
adaptability of such models (e.g., across 
different hospital settings), on top of limiting 
the amount of EHRs required for training. 
In specific cases, such as clinical negation 
detection, a version of BERT adapted to the 
clinical domain with domain adversarial 
training [18] underperforms BERT-base [44], 
implying domain adaptation may be harmful 
if it moves the model parameters too far away 
from their starting point.

Finally, more “elaborate” methods have 
been used to extend the fine-tuning process 
and push benchmark performances further. 
Examples include the use of active learning 
on top of pre-trained BERT models [45], 
complementing the base model with a 
transfer learning framework [46], or a graph 
NN architecture [47].

3.5   Cross-lingual Adaptation
A special case of adaptation is in the devel-
opment of NLP systems for new languages. 
Researchers developing systems in low-
er-resourced languages may be able to take 
advantage of advances made in English. 
A recent survey looked more generally at 
work in developing clinical NLP systems for 
non-English languages [11]; we refer readers 
to that work for a broader look. In addition 
to including some work which has been pub-
lished since that review, we focus on systems 
that explicitly used some kind of cross-lingual 
adaptation and describe several dimensions of 
cross-lingual adaptation that each work uses 
some subset of. In particular, these include 
leveraging methods developed on English 
into new languages, building on English open-
source software, using automatic translation 
methods, leveraging annotation guidelines to 
create clinical language resources, and using 
or extending other knowledge resources (e.g., 
the Unified Medical Language System [48]) 
in languages other than English.

Several approaches used similar methods 
as in work on English, but also explicitly 
mentioned taking advantage of guidelines 
and standards developed on English in 
order to create datasets for tasks in other 
languages. One work leveraged the THYME 
temporal annotation guidelines [3] to create 
a dataset of Italian cardiology documents, 
then trained and evaluated recurrent NN 
(RNN)-based methods to extract temporal 
events [49]. Work on de-identification of 
Dutch clinical text [50] used guidelines from 
the i2b2/UTHealth shared task [8], then ap-
plied RNN-based methods and showed them 
superior to feature-based methods.

Other work has leveraged software 
resources, sometimes including model 
building but mostly focused on the software 
architecture. Work in Spanish [51] and 
German [52] has created modules mirroring 
those in Apache cTAKES and OpenNLP for 
some important foundational NLP tasks.

One interesting approach was the use of 
machine translation methods where models 
between English and a lower-resourced 
language pair could be leveraged to build 
resources in a new language. One work 
used machine translated death certificates 
from other languages to complement ex-

isting data resources, and showed that for 
the task of coding these certificates with 
ICD-10 codes, the augmented data resource 
was superior to just using the one language 
[53]. Another approach translated radiology 
reports in Spanish into English in order to 
process with the English MetaMap [54]. 
Interestingly, this approach still used lan-
guage-specific knowledge resources, as they 
found that translation was improved if they 
pre-processed the data by expanding Spanish 
medical abbreviations.

Finally, some of the most valuable 
cross-lingual efforts relate to the develop-
ment of new data resources in non-English 
languages, including knowledge resources 
and labeled training sets. One effort created 
a multilingual corpus (German and Span-
ish) of clinical text by scraping biomedical 
publications in those languages for clinical 
case reports [55]. Another effort scraped 
journal articles, blog posts, and books for 
biomedical text in Romanian topically 
related to three medical specialties -- car-
diology, diabetes, and endocrinology -- and 
also added layers of linguistic annotation to 
facilitate model training [56].

4   Discussion and Conclusion
The advent of pre-trained transformer models 
has affected clinical NLP by enabling large 
performance gains, and in some cases, these 
gains dwarf the painstaking progress made 
over the previous decade. However, the 
most recent works have shown that general 
domain pre-training does not always transfer 
adequately to the clinical domain due to 
its highly specialized language. As shown 
in some of the work mentioned above, this 
hurdle is being addressed by either incor-
porating additional adaptation techniques or 
pre-training domain specific transformers. It 
is expected that in-domain versions of some 
of the newest transformer architectures will 
appear soon, like those learning long-distance 
dependencies or from multilingual data.

There is still much work to be done in 
showing that the gains obtained by pre-
trained transformers are meaningful to real 
world use cases. One major concern is that 
running these large models is computation-
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ally expensive and often prohibitive for many 
institutions. Approaches to obtain smaller 
models and faster fine-tuning, like distilla-
tion [57] or adapter modules [58], should be 
explored. In addition, advances in domain 
adaptation and transfer learning should 
show that they make measurable impact on 
the kinds of performance that matter (e.g., 
time savings for clinical researchers, better 
clinical trial accrual). Finally, it is unclear 
whether clinical transformers will still re-
quire further adaptation to some specialties 
with large numbers of rare words and tasks 
lacking training data. How to transfer these 
models in the zero- or few-shot scenarios is 
an open research question.

Overall, the amount of work in domain 
adaptation and transfer learning is limited by 
dataset availability. Besides the high costs of 
creating and distributing clinical datasets, 
the incentives around creating new datasets 
(e.g., citation metrics) favor creating the 
first dataset for a new task rather than the 
nth dataset for an existing task. Therefore, to 
enable further research, new dataset creation 
should prioritize the inclusion of heteroge-
neous data, so that generalizability can be 
assessed from the start.

Several studies use MIMIC-III [9] as 
part of either model development or evalu-
ation, and it has proven to be an important 
resource for providing accessible evaluation 
benchmarks. Looking forward, more varied 
types of benchmark datasets and evaluation 
frameworks will be needed. In particular, 
MIMIC is often used for pre-training since 
it is large, while also being used as a bench-
mark for outcome prediction [59], and this 
overlap in data likely leads to overestimated 
performance. New datasets, methods, or 
resources around developing shareable pre-
trained models that do not rely on a single 
data source would have a major impact.

Despite advances in the use of transfer 
learning and domain adaptation techniques 
for clinical NLP, the majority of studies 
still report work on English. However, the 
growing body of research in other languages 
is encouraging, and further work on new 
languages is made more feasible thanks to 
these advances. More collaboration between 
researchers across the language divide would 
likely accelerate progress in non-English 
clinical NLP to prevent reinventing the wheel.
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