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Key Points
• This study includes new insights about cell therapy for neonatal HIE and CP in schema.
• This study shows precise mechanism of neonatal HIE cascade.
• The mechanism of cell therapy by comparing umbilical cord blood stem cell with MSC is shown.
• The review of recent clinical trials of UC-MSC is shown.
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Abstract Neonatal hypoxic–ischemic encephalopathy (HIE) causes permanent motor deficit
“cerebral palsy (CP),” and may result in significant disability and death. Therapeutic
hypothermia (TH) had been established as the first effective therapy for neonates with
HIE; however, TH must be initiated within the first 6 hours after birth, and the number
needed to treat is from 9 to 11 to prevent brain damage from HIE. Therefore, additional
therapies for HIE are highly needed. In this review, we provide an introduction on the
mechanisms of HIE cascade and how TH and cell therapies such as umbilical cord blood
cells and mesenchymal stromal cells (MSCs), especially umbilical cord-derived MSCs
(UC-MSCs), may protect the brain in newborns, and discuss recent progress in
regenerative therapies using UC-MSCs for neurological disorders. The brain damage
process “HIE cascade”was divided into six stages: (1) energy depletion, (2) impairment
of microglia, (3) inflammation, (4) excitotoxity, (5) oxidative stress, and (6) apoptosis in
capillary, glia, synapse and/or neuron. The authors showed recent 13 clinical trials
using UC-MSCs for neurological disorders. The authors suggest that the next step will
include reaching a consensus on cell therapies for HIE and establishment of effective
protocols for cell therapy for HIE.
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Neonatal mortality rates have decreased considerably over the
past several decades, yet the prevalence of severe neurological
sequelae such as cerebral palsy (CP), epilepsy, intellectual
disability, respiratory disorders, hearing loss, visual disturban-
ces, hydrocephalus, behavioral problems and others due to
hypoxic–ischemic encephalopathy (HIE) have remained at a
similar rate over several decades. HIE in full-term infants occurs
in an estimated 0.5 to 2/1,000 live births and results in severe
disabilityandevendeath. In recent years, therapeutichypother-
mia (TH) has been established as the first effective therapy for
neonates with HIE.1 However, TH must be initiated within the
first6hoursofbirth, andthenumberneeded to treatment is9 to
11 to prevent brain damage from HIE. Therefore, additional
therapies forHIEarehighlyneeded. In thiscontext, cell therapies
such as umbilical cord blood stem cells (UCBCs), bone marrow
(BM) stem cells, and umbilical cord/BM-derived mesenchymal
stromal cells (UC/BM-MSCs) have started to be incorporated
into new protocols for protecting against ischemic brain dam-
age.2 Interestingly, MSC therapy may also provide promising
results for neonateswith acute respiratory distress syndrome in
the coronavirus disease 2019 infection era.3

The pathological characteristics of neonatal brain injury
differ markedly from those in adults. For example, energy
demand is much smaller hypoxia and brain swelling is not as
precarious and there is a secondary energy failure phase due
to complicated cascade of HIE.4–6 Furthermore, there is a
need to overcome “secondary energy failure,” since new-
borns with HIE often deteriorate even after appropriate
neonatal cardiopulmonary resuscitation (CPR), respiratory
circulation support therapy, and TH.

Mechanism of Neonatal HIE Cascade

We present the mechanism of the HIE cascade, energy
depletion, excitotoxicity, intracellular Ca2þ mobilization,
and cell damage process in ►Fig. 1.

Olney first reported “excitotoxicity.” Meaning that some of
the neural cell death due to hypoxia–ischemic (HI) insult was
mediated by excess production of the excitatory neurotrans-
mitter “glutamate” and elevation of intracellular Ca2þ concen-
tration by N-methyl-D-aspartate glutamatergic receptor
(NMDA GluR), AMPA/Kainate GluR (A/K GluR), and metabolic
GluR(mGluR) in different ways.7,8 We summarize the mecha-
nismof “excitotoxicity” in►Fig. 1. Glutamate (Glu) is converted
toGlutamine (Gly) by the actionof glutamine synthetase (GS) in
astrocyte, and shuttled from astrocyte to neurons, then con-
verted to Glu by glutaminases (GLS). Energy depletion in
presynaptic site of neurons activates release ofGlu into synapse.
A large proportion of theGlu released at the synapse is taken up
by astrocytes via excitatory amino acid transporter together
with three Naþ ions. This Naþ is extruded by the action of the
Naþ/Kþ ATPase. Glu uptake cannot work enough in the condi-
tion of adenosine triphosphate (ATP) reduction. Glu at synapse
activates NMDA GluR, A/K GluR, and mGluR.

In contrast to the experience with adult HI insults, some
newborns who had recovered from severe asphyxia subse-
quently deteriorated rapidly and expired a few days later.
Kirino first reported the phenomenon “Delayed neuronal

death.”9 Delpy et al reported the phenomenon of delayed
neuronal death in newborns after HI insults, termed “sec-
ondary energy failure,” using a phosphorus magnetic reso-
nance spectroscopy to replicate the complicated process in
piglets and rat pups in the 1990s.10–13 Simon et al proposed
that brain damage due to HIE can be treated by NMDA
antagonists and suggested that brain damage due to HIE
could be blocked pharmacologically to protect against neo-
natal HIE.14Unfortunately, NMDA receptor blocker and other
drugs, such as calcium channel antagonists and magnesium
sulfate, were not effective in clinical care. We reported that
irreversible neuronal cell damage was triggered by an eleva-
tion of intracellular Ca2þ concentration subsequent to exces-
sive accumulation of the excitatory neurotransmitter
glutamate in immature and mature rats during ischemia
and glucose deprivation.15 Furthermore, there is increasing
evidence that mitochondrial dysfunction generated by ex-
cessive intracellular Ca2þ accumulation results in oxidative
stress, apoptosis, and necrosis. We summarize the mecha-
nism of elevation of intracellular Ca2þ concentration and
irreversible neuronal cell death in ►Fig. 1. Calcium influx by
NMDA GluR directly increases intracellular Ca2þ concentra-
tion. A/K receptors flux large amounts of sodium, depolariz-
ing cellmembrane, and blocking Ca2þ efflux fromneurons by
Cation/Ca2þ antiporter. Depolarization of cell membrane
activates voltage-sensitive Ca channels and facilitates
NMDAGluR activation. Signaling of mGluR by Glu, activating
phospholipase C (PLC), facilitates inositol 1,4,5-triphosphate
(IP3) and activates IP3 inducing calcium release from endo-
plasmic reticulum (ER). Therefore, activation of three differ-
ent GluRs leads to elevation of intracellular Ca2þ

concentration in different ways. Furthermore, elevation of
intracellular Ca2þ concentration activates calcium-induced
calcium release from ER. Ca2þ efflux from neurons by Ca2þ-
ATPase cannot work enough to prevent elevation of intracel-
lular Ca2þ concentration in the condition of ATP deduction.
These multiple mechanisms of HIE induce steep elevation of
intracellular Ca2þ concentration from10�7M in the condition
of ATP reduction and reachplateau level in severalminutes as
we show in our article. Elevation of intracellular Ca2þ con-
centration deteriorates mitochondrial function and leads to
accumulations of free radicals, necrosis, and apoptosis. After
plateau level of intracellular Ca2þ concentration, neuronal
damage becomes irreversible. So, recent therapies in the
acute phase of HIE could be expected with the aim of
suppressing the commencement of brain damage cascade.

On the contrary, we reported that the presence of glucose
is essential for neural activity in the adult rat and showed
that glucose metabolites such as lactate and β-hydroxybu-
tyrate (OHBA) are available for both neural activity and
maintaining the level of high-energy phosphates in a tissue
of hippocampus slice in the immature rats.16 We also
reported the possibility of lactate preserving neural function
of the adult brain.17 We further described the relationship
between neural activity and the levels of high energy phos-
phates during deprivation of oxygen and/or glucose in hip-
pocampal slices of immature and adult rats. Our results
indicate that the immature rat is extremely resistant to
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oxygen deprivation from a functional and metabolic per-
spectives, whereas in the adult rat, preservation of neural
activity highly depends on both oxygen and glucose and that
glucose plays an important role in the preservation of neural
activity in addition to its major function as an energy
substrate, especially in immature animals.6 Therapies target-
ing energy substrates are still the focus of current research.18

Ferriero explained that brain damage in the HIE cascade is
divided into five stages: (1) energy depletion, (2) inflammation,

(3) excitotoxity, (4) oxidative stress, and (5) apoptosis.19–21

Recent reports not only focus on microglia that have a role in
immunomodulation but also promote local network synchro-
nization in the synapses in the developing brain.22 Impairment
ofmicroglia plays a key role inmost early stages of HIE cascade,
especially in terms of inflammation and that may continue
duringaperiodofdays toweeks.Wesummarize themechanism
of impairment of microglia in case of HIE in ►Fig. 1. Energy
depletion (O2-, Glucose-) in a capillary induces impairment of

Fig. 1 Mechanism of hypoxic–ischemic encephalopathy (HIE) cascade and cell therapy for HIE cascade. First, HIE induces energy depletion (O2-,
Glucose-) in a capillary and glucose reduction in endothelial cell (EC) and in astrocyte. Glucose reduction in astrocyte leads to reduction of
pyruvate and lactate that is converted from pyruvate by lactate dehydrogenase 5 (LDH5). And it leads to reduction of lactate and reduction of
pyruvate that is converted from lactate-by-lactate dehydrogenase 1(LDH1) in presynaptic site. Then, pyruvate reduction with O2 reduction leads
to adenosine triphosphate (ATP) reduction in mitochondria. Glutamate (Glu) is converted to glutamine (Gly) by the action of glutamine
synthetase (GS) in astrocyte, and shuttled from astrocyte to neurons, then converted to Glu by glutaminases (GLS). Energy depletion in
presynaptic site of neurons activates release of Glu into synapse. A large proportion of the Glu released at the synapse is taken up by astrocytes
via excitatory amino acid transporter (EAAT) together with three Naþ ions. This Naþ is extruded by the action of the Naþ/Kþ ATPase. Glu uptake
cannot work enough in the condition of ATP reduction.83 Glu at synapse activate N-methyl-D-aspartate glutamate glutamatergic receptor
(NMDA GluR), AMPA/Kainate glutamatergic receptor (A/K GluR), and metabolic glutamatergic receptor (mGluR). On the other hand, A/K
receptors do not directly allow entry of sufficient calcium to increase intracellular Ca2þ concentration. However, A/K receptors flux large
amounts of sodium, depolarizing cell membrane and blocking Ca2þ efflux from neurons by cation/ Ca2þ antiporter (CaCA). Depolarization of cell
membrane activates voltage-sensitive Ca channels (VSCC) and facilitate NMDA GluR activation. Signaling of mGluR by Glu, activating
phospholipase C (PLC), facilitate inositol 1,4,5-triphosphate (IP3) and activate IP3 induces calcium release (IICR) from endoplasmic reticulum
(ER). Furthermore, elevation of intracellular Ca2þ concentration activates calcium-induced calcium release (CICR) from ER. Ca2þ efflux from
neurons by Ca2þ-ATPase cannot work enough to prevent elevation of intracellular Ca2þ concentration in the condition of ATP deduction. These
multiple mechanisms of HIE induce steep elevation of intracellular Ca2þ concentration from 10�7M and reach plateau level in several minutes as
we show in our article. After plateau level of intracellular Ca2þ concentration, neuronal damage becomes irreversible.15 Microglia also play an
important role of neuronal cell damage in case of HIE. Energy depletion in a capillary induces impairment of microglia and it facilitates cytokines,
Glu, reactive oxygen species (ROS), and reactive nitrogen species (RNS). Red circles show protective effects of mesenchymal stem cell (MSC) and
umbilical cord blood stem cells (UCBCs) on impairment of microglia, inflammation, oxidative stress (free radicals and ROS/RNS) and apoptosis.
Red square shows a protective effect of MSC on excitotoxicity. Red triangle shows a protective effect of bone marrow mononuclear cells
(BM-MNCs) on energy reduction in EC via gap junction.55
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microglia and it facilitates cytokines, Glu, reactive oxygen
species (ROS), and reactive nitrogen species (RNS). Therefore,
we suggest an additional mechanism namely “Impairment of
microglia” and divide the brain damage process into six stages:
(1) energy depletion, (2) impairment of microglia, (3) inflam-
mation, (4) excitotoxity, (5) oxidative stress, and (6) apoptosis
(►Fig. 2). Impairment of microglia, oxidative stress, and apo-
ptosismightcontinueduring aperiodofdaysorweeks afterCPR
and respiratory circulation support, so further strategies are
needed for this period of time.

How TH and Cell Therapy Prevent Newborn
Brain Damage from HIE?

In 1989, Busto et al showed that mild hypothermia after HI
insult in adult rats reduced the release of neurotransmitters
and had a protective effect on hippocampal neuronal injury.23

In 1996, Thoresen et al reported the protective effect of
hypothermia against brain injury in neonatal rats.24,25 In
1997, we demonstrated that hypothermia therapy was an

effective treatment for hypoxic or ischemic brain damage in
rats by suppressing energy loss and elevation of intracellular
Ca2þ concentration. The protective effects of hypothermia (33
and 29°C) on the neuronal activity, intracellular Ca2þ accumu-
lation, and ATP levels during deprivation of oxygen and/or
glucose were investigated using guinea pig hippocampal sli-
ces.26 In 2004, McManus et al reported that neuroprotective
effects of hypothermia are mediated through a reduction in
nitric oxide and superoxide formation and that this effect is
likely tobedownstreamofNMDAreceptoractivation.27Recent
studies showed that TH has been suggested to provide a
protective effect mainly on (1) energy depletion due to reduc-
tion in energy metabolism but also other five stages (2)
impairment of microglia,28 (3) inflammation,29,30 (4) excito-
toxity,27 (5) oxidative stress,27 and (6) apoptosis31 (►Table 1).

In recent years, cell therapies such as UCBCs, umbilical
cord-derived mesenchymal stromal cells (UC-MSCs) and
bone marrow-derived mesenchymal stromal cells (BM-
MSCs) are attracting attention due to their HIE neuropro-
tective ability.

Fig. 2 Timing of promising cell therapies with standard therapies for hypoxic–ischemic encephalopathy cascade. Inflammation, oxidative stress,
apoptosis, and necrosis occur through downstream energy depletion, excitotoxicity, and/or impairment of microglia. Cell damage begins
immediately after hypoxic–ischemic insult and repair process begin after that. Impairment of microglia, oxidative stress, and apoptosis
continues during a period of days to weeks beyond the phase of “secondary energy failure.” Cell therapy could also work for days to weeks after
neonatal cardiopulmonary resuscitation (CPR), respiratory circulation support therapy, and therapeutic hypothermia (TH) are over.

Table 1 Stage of effectiveness of TH, UCBCs, and MSCs for HIE

Energy
depletion

Impairment
of Microglia

Inflammation Excitotoxicity Oxidative
stress

Apoptosis Enhance
regeneration

TH þþ26 þ28 þ29,30 þ27 þ27 þ31

UCBCs þ59 þ42 þ48 þ49 þ49 þ51,53,57

MSCs þþ33,43,44 þþ39,44–47 þ34 þ34 þ34 þ35

Abbreviations: HIE, hypoxic–ischemic encephalopathy; MSCs, mesenchymal stem cells; TH, therapeutic hypothermia; UCBCs, umbilical cord blood
stem cells.
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UCBCs are suggested to provide a protective effect mainly
on impairment of microglia, inflammation, oxidative stress
and apoptosis, aswell as their ability to enhance regeneration.
Red circles in ►Fig. 1 show protective effects of UCBCs on
impairment of microglia, inflammation, oxidative stress (free
radicals and ROS/RNS), and apoptosis. While red triangle
in►Fig. 1 shows a protective effect of bone marrowmononu-
clear cells (BM-MNCs) on energy reduction in endothelial cell
via gap junction (55) (►Table 1).

MSCs are cells derived from several sources as defined
with by the International Society for Cellular Therapy; first,
MSCsmust be plastic-adherent whenmaintained in standard
culture conditions. Second, MSC must express CD105, CD73,
and CD90, and lack expression of CD45, CD34, CD14 or
CD11b, CD79α, or CD19 and human leukocyte antigen–DR
isotype (HLA-DR) surface molecules. Finally, MSC must dif-
ferentiate to osteoblasts, adipocytes, and chondroblasts in
vitro.32 MSCs may provide a protective effect against im-
pairment of microglia,33 inflammation, excitotoxity, oxida-
tive stress, and apoptosis34 Red circles in ►Fig. 1 show
protective effects of MSC on impairment of microglia, in-
flammation, oxidative stress (free radicals and ROS/RNS),
and apoptosis. And, red square in ►Fig. 1 shows a protective
effect of MSC on excitotoxicity (►Table 1). Furthermore, the
paracrine effect by neurotrophic factors has been reported in
UC-MSCs on neurological regeneration, showing that UC-
MSCs-conditioned medium enhances Schwann cell’s viabili-
ty and proliferation via increases in nerve growth factor and
brain-derived neurotrophic factor (BDNF) expression.35 We
also found that UC-MSCs secrete BDNF and hepatocyte
growth factor (HGF) attenuating brain injury.34,36 We also
hope that MSC-derived extracellular vesicles will be thera-
peutic candidates for a successful clinical translation.37

However, some reports propose negative effects of cell
therapy. Dalous et al demonstrated that UC-MNCs cannot
integrate into the developing brain or promote subsequent
repair in most conditions tested, and that the intraperitoneal
injection of high amounts of UC-MNCs aggravated WMD and
was associated with systemic inflammation.38 Furthermore,
the timing, dose, routeofapplicationofUC-MNCs, andUC-MSCs
have not yet been precisely determined. A systematic review
and meta-analysis of MSC for HIE demonstrated that there is
various delivery routes (intracerebral, intranasal, intravenous,
and others), various timing of application after HI insult (�72
hours, >72hours, multiple doses),various source (BM, UC,
placenta,not reported),variousorigin (Allogeneic,Xenogeneic),
and various dose (�250,000 cells, >250,000 cells—�500,000
cells, >500,000 cells—�1,000,000 cells, >1,000,000 cells).39

Interestingly, combination of TH and other therapy might
worsen thebrain injury.40 It is still highlycontroversialwhether
cell therapy for perinatal brain injury is effective or not.

Reduction in Impairment of Microglia
Microglia, immune cells of the central nervous system,
continuously survey the microenvironment and respond to
brain injury.41 Microglia are activated in response to brain
injury, and are polarized toward an inflammatory phenotype
that enhances the generation of pro-inflammatory media-

tors such as interleukin-1β and tumor necrosis factor-α.
However, they can also be polarized to the anti-inflammato-
ry phenotype via mediators such as arginase 1 and trans-
forming growth factor-β. Therefore, modulation of the
phenotype of the microglia may be a novel therapeutic
strategy for the treatment of neurological disorders accom-
panied by inflammation. Li et al reported that UCBC admin-
istration at 12 hours after HI reduces white matter injury by
affecting activated microglia.42 Recent experimental studies
reported that MSCs affect activated microglia.43 We found
UC-MSCs could immunomodulate activated microglia and
decreased their inflammatory cytokines.Moreover, UC-MSCs
could change their phenotypes including morphology and
phagocytic ability. Morphological and phagocytotic analyses
revealed that lipopolysaccharide stimulation significantly
changed microglial morphology to amoeboid in which F-
actin spread with ruffle formation resulting in reduced
phagocytosis of Escherichia coli, while MSC co-culture in-
duced shrinkage and concentration of F-actin to form an
actin ring, thereby restoring phagocytosis.44 These effects of
UC-MSCs that modulate the activated microglia may be a
therapeutic potential for the treatment of neurological dis-
orders accompanied by inflammation.

Immunomodulation/Anti-inflammatory Action
It is not yet known which component of cord blood is most
efficacious for treating brain injury-mediated inflammation.
Specific cell populations found in cord blood and tissue, such
asMSCs and endothelial progenitor cells, have demonstrated
potential utility for mitigating the inflammatory process
induced by brain injury. Immunosuppressive effects have
now become the most popular property of MSCs for clinical
use.45 Defect of HLA-DR (class II) expression in MSCs can
theoretically rescue them from immune recognition by
CD4þ T cells.46 Moreover, MSCs do not express co-stimula-
tory surface antigens such as CD80, and CD86, which activate
T-cells.47 Thus, MSCs escape activated T cells and exert
immunomodulation. MSCs are reported to protect brains
against global and local neuroinflammatory cascades trig-
gered by HI events.39,44 However, at times MSCs have both
anti- and proinflammatory effects. Indeed, in our study,
some UC-MSCs caused inflammatory response in resting-
surveying (not activated) microglia, indicating that MSCs
should not be administered to healthy brain with no inflam-
mation.44 Some reports, however, suggest that UCBC admin-
istration reduces white matter injury after HI insult, via a
combination of anti-inflammatory and other actions.48

Reduction of Oxidative Stress and Apoptosis
Hattori et al reported that a single intraperitoneal injection of
UCB-derivedmononuclearcells 6hoursafteran ischemic insult
was associated with a transient reduction in the number of
apoptosis and oxidative stress marker–positive cells, but it did
not induce long-term morphological or functional protection.
They suggested that repeated administration or a combination
treatment of UCB-derived mononuclear cells may be required
to achieve sustained protection.49However,MSCs are reported
to be able to alleviate oxidative stress, and to reduce apoptosis.
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Wealso reportedUC-MSC-secretedHGFand BDNF have neuro-
protectiveeffectsondamagedneuronsby reducing thenumber
of neurons displaying signs of apoptosis/necrosis.34

Enhancement of the Regenerative Process by
Secretion of Various Cytokines
Human CD34þ cells have been shown to secrete various
growth factors such as BDNF, glial cell line–derived neuro-
trophic factor (GDNF), vascular endothelial growth factor
(VEGF), and numerous angiogenic factors, including HGF and
insulin-like growth factor-1.50–53 MSCs have also been
reported to secrete various neurotrophic factors and growth
factors such as BDNF, GDNF, HGF, and VEGF.35

Enhancement of the Regenerative Process by
Angiogenesis for Better Cerebral Circulation
In 2004, Taguchi et al reported that after a stroke, CD34þ cells
provide a favorable environment for neuronal regeneration,
suggesting an essential role of CD34þ cells in directly or
indirectly promoting an environment conducive to neovascu-
larization of the ischemic brain. Endothelial progenitor cells
have angiogenic andvascular reparative capabilities thatmake
them ideal for neurovascular repair.54,55 Such a rich vascular
environment, along with the generation of other nurturing
neuronal mediators from CD34þ cells, such as VEGF, epider-
mal growth factor 2, and insulin-like growth factor 1–1,
enhances subsequent neuronal regeneration.56,57Endogenous
neurogenesis is accelerated by neuronal progenitors to the
damagedarea, followedby theirmaturationandsurvivalwhen
CD34þ cells continue to stimulate the formation of vascular
channels.58 In 2020, Kikuchi-Taura et al reported that angio-
genesis is activated by BM-MNCs via gap junction–mediated
cell–cell interaction and that cell–cell interaction via gap
junction is the prominent pathway for activation of angiogen-
esis at endothelial cells after ischemia and provided novel
paradigm that energy source supply by stemcell to injured cell
is one of the therapeutic mechanisms of cell-based therapy.59

Enhancement of the Regenerative Process by
Neurogenesis
Neural stem/progenitor cells participate in the regenerative
response to perinatal HI.60 One report suggests that hemato-
poietic stem cells could differentiate into nonlymphohemato-
poietic cells such as neurons or microglia or could stimulate
neurogenesis.61 However, it is uncertain whether this is
significantly effective for neonateswith HIE.62–65We reported
UC-MSCs could enhance neurogenesis with high expression of
growth-associated protein 43 in injured neurons, and also
confirmed elongated processes in injured neurons. We also
previously showed that UC-MSCs exert their neuroprotective
effects partially through secretion of BDNF and HGF by inhib-
iting the apoptosis/necrosis of injured neurons.34

History of Clinical Therapies for HIE

History of TH and Cell Therapies for Neonatal HIE
The 2010 revised International Liaison Committee on Re-
suscitation guidelines66 stated that infants born at or near

term with evolving moderate-to-severe HIE should be of-
fered TH, based on three large-scale randomized controlled
trials.

However, TH must be initiated within the first 6 hours
after birth. TH showed protective effects against HIE mainly
in acute stages. By contrast, cell therapy may have a much
longer therapeutic timewindowover acute stages because it
might reduce apoptosis/oxidative stress and enhance the
regenerative process. Furthermore, cell therapies such as
UCBCs and UC-MSCs are being incorporated into new pro-
tocols for protection against ischemic brain damage in some
countries. Cotten et al reported autologous UCBC phase 1
clinical study for newborns with HIE for the first time in
2013.55 Twenty-three infants were cooled and received cells.
Median collection and infusion volumes were 36 and 4.3mL.
Vital signs including oxygen saturation were similar before
and after infusions in the first 48 postnatal hours. Cell
recipients and concurrent cooled infants had similar hospital
outcomes (mortality, oral feeds at discharge). Thirteen of 18
(74%) cell recipients and 19 of 46 (41%) concurrent cooled
infants with known 1 year outcomes survived with Bayley III
scores� 85 in three domains (cognitive, language, andmotor
development).67 In 2014, we administered autologous UCBC
therapy for neonatal HIE, for the first time in Japan.2 In 2014,
we established the Neonatal Encephalopathy Consortium,
Japan research group for autologous UCBC therapy for neo-
natal HIE and started using autologous UCBC therapy for
neonatal HIE. This is a pilot study for testing the feasibility
and safety of UCBC therapy in infants with neonatal HIE; the
study is an open-label, single-group assignment. The enroll-
ment criteria for our autologous UCBC study are the same as
the inclusion/exclusion criteria for TH in Japan. If a neonate is
born with signs and symptoms of moderate-to-severe en-
cephalopathy and meets the criteria for TH, the neonate is
considered for entry to this clinical study. There were no
serious adverse events thatmight be related to cell therapy in
all six newborns. At 30 days of age, the six infants survived
without circulatory or respiratory support. At 18 months of
age, neurological development was normal in four infants
and delayed in two infants. This study shows that autologous
UCBC therapy is feasible and safe.68

Recently, MSCs have been attracting much attention for
their therapeutic potential for neurological disorders.69

Huang et al administered UC-MSCs for CP and reported
that UC-MSC infusion with basic rehabilitation was safe
and effective in improving gross motor functions in children
with CP.70 On the contrary, the Nagamura-Mukai group
focused on UC because of (1) abundance and ease of collec-
tion, (2) noninvasive collection, (3) little ethical controversy,
(4) low immunogenicity with significant immunosuppres-
sive ability, and (5) migration ability toward injured
sites.36,45 We plan to use UC-MSCs for neonatal HIE or CP,
after using them as a regenerative product for GVHD.

Clinical Trials Using UC-MSCs
Clinical trials using UC-MSCs for neurological disorders have
been increasing in number and the recent clinical reports are
summarized in ►Table 2.
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Recent clinical trials using UC-MSCs cover a wide range of
neurological diseases including CP (n¼6), spinal cord injury
(n¼1), spinocerebellar ataxia (n¼1), traumatic brain injury
(n¼1), multiple sclerosis (n¼2), and autism spectrum dis-
order (n¼2). Most studies were performed using intrathecal
(IT) (n¼5), intravenous (IV) (n¼6), and ITþ IV (n¼2) injec-
tion, and multiple administration of cells: two times (n¼1),
three times (n¼2), four times (n¼6), seven times (n¼1),
eight times (n¼1), four or eight times (n¼1), and others
(n¼1). The number of cells of administration is various
(each dose 9�106–8�107 cells or 0.5–4.0�06 cells/kg).
IV injection is easier compared with IT, but UC-MSCs are
surely distributed to the central nervous system without
being trapped in the lung and blood–brain barrier in IT
injection

Autologous transplantation is required to avoid transplant
rejection, but timing is crucial. UC-MSCs preparation takes
3 months or more and to confirm their quality (from infec-
tion and genetic testing), it is impossible to administer
autologous UC-MSCs in the acute phase after neurological
injuries. Also, establishment of a system in cryopreservation
of autologous UC is required. Nonetheless, allogeneic MSCs
can be ordered as a preparation anytime and administered in
the acute to subacute phase.

Considering UC-MSC therapy for HIE, administration of
UC-MSCs in the acute phase might be expected with the aim
of suppressing the commencement of brain damage cascade.
Therefore, UC-MSCs used for HIE should be allogeneic and
should be prepared immediately. UC-MSC therapy for CP is
performed considering neurotrophic effects of UC-MSCs in
addition to immunomodulation against chronic inflamma-
tion. Hence, UC-MSCs used for CP could be both autologous
and allogeneic.

Few serious adverse events were observed after trans-
plantation, and most reports suggest that UC-MSC has a
therapeutic potential with relative safety. MSCs for neuro-
logical diseases are expected as a new cell therapy by
combining with rehabilitation and other medication thera-
pies suggested by recent clinical trials.

Conclusion

Since the establishment of consensus suggesting that TH
should be offered for newborn HIE, it is still challenging to
prevent brain damage from complicated cascade of HIE. We
suggest that the next step will include reaching a consensus
on cell therapies for HIE and establishment of effective
protocols for cell therapy for HIE.
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