Semin Neurol 2021; 41(04): 463-472
DOI: 10.1055/s-0041-1726330
Review Article

Cerebrovascular Disease and Cognitive Outcome in Patients with Cardiac Disease

1   Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
,
Rebecca F. Gottesman
1   Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
› Author Affiliations

Abstract

The pace of understanding cognitive decline and dementia has rapidly accelerated over the past decade, with constantly evolving insights into the vascular contributions to cognitive impairment and dementia (VCID). Notably, more overlap has been discovered in the pathophysiology between what was previously understood to be Alzheimer's disease and VCID, leading to a heightened emphasis on disease prevention through early and aggressive control of vascular risk factors. One particularly vulnerable population may be those with cardiac disease, as they are at risk for cerebrovascular disease, which itself can lead to dementia, and increasing evidence supports cognitive impairment in disease processes such as heart failure and atrial fibrillation, independent of ischemic stroke, suggesting other potential mechanisms. In this article, we review the evidence supporting the relationship between cardiac disease, cerebrovascular disease, and cognitive decline and discuss the ongoing and future research efforts aimed at defining the important relationship between these entities.



Publication History

Article published online:
13 April 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kamel H, Healey JS. Cardioembolic stroke. Circ Res 2017; 120 (03) 514-526
  • 2 Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991; 22 (08) 983-988
  • 3 Johansen MC, De Vasconcellos HD, Gottesman RF. Understanding atrial cardiopathy: an under-recognized contributor to cardioembolic stroke. Curr Treat Options Neurol 2019; 21 (07) 32
  • 4 Yaghi S, Kamel H, Elkind MSV. Atrial cardiopathy: a mechanism of cryptogenic stroke. Expert Rev Cardiovasc Ther 2017; 15 (08) 591-599
  • 5 Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke 2016; 47 (03) 895-900
  • 6 Kamel H, Okin PM, Longstreth Jr WT, Elkind MS, Soliman EZ. Atrial cardiopathy: a broadened concept of left atrial thromboembolism beyond atrial fibrillation. Future Cardiol 2015; 11 (03) 323-331
  • 7 Berman JP, Norby FL, Mosley T. et al. Atrial fibrillation and brain magnetic resonance imaging abnormalities. Stroke 2019; 50 (04) 783-788
  • 8 Frey A, Sell R, Homola GA. et al. Cognitive deficits and related brain lesions in patients with chronic heart failure. JACC Heart Fail 2018; 6 (07) 583-592
  • 9 Ito A, Goto T, Maekawa K, Baba T, Mishima Y, Ushijima K. Postoperative neurological complications and risk factors for pre-existing silent brain infarction in elderly patients undergoing coronary artery bypass grafting. J Anesth 2012; 26 (03) 405-411
  • 10 Otomo S, Maekawa K, Goto T, Baba T, Yoshitake A. Pre-existing cerebral infarcts as a risk factor for delirium after coronary artery bypass graft surgery. Interact Cardiovasc Thorac Surg 2013; 17 (05) 799-804
  • 11 Wityk RJ, Goldsborough MA, Hillis A. et al. Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery. Arch Neurol 2001; 58 (04) 571-576
  • 12 Indja B, Woldendorp K, Vallely MP, Grieve SM. Silent brain infarcts following cardiac procedures: a systematic review and meta-analysis. J Am Heart Assoc 2019; 8 (09) e010920
  • 13 Merkler AE, Sigurdsson S, Eiriksdottir G. et al. Association between unrecognized myocardial infarction and cerebral infarction on magnetic resonance imaging. JAMA Neurol 2019; (epub ahead of print) DOI: 10.1001/jamaneurol.2019.1226.
  • 14 Johansen MC, Shah AM, Lirette ST. et al. Associations of echocardiography markers and vascular brain lesions: the ARIC study. J Am Heart Assoc 2018; 7 (24) e008992
  • 15 Wardlaw JM, Smith EE, Biessels GJ. et al; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12 (08) 822-838
  • 16 Ter Telgte A, Wiegertjes K, Gesierich B. et al. Temporal dynamics of cortical microinfarcts in cerebral small vessel disease. JAMA Neurol 2020; 77 (05) 643-647
  • 17 Ferro D, van den Brink H, Amier R. et al; Heart-Brain Connection Consortium. Cerebral cortical microinfarcts: a novel MRI marker of vascular brain injury in patients with heart failure. Int J Cardiol 2020; 310: 96-102
  • 18 Liebetrau M, Steen B, Hamann GF, Skoog I. Silent and symptomatic infarcts on cranial computerized tomography in relation to dementia and mortality: a population-based study in 85-year-old subjects. Stroke 2004; 35 (08) 1816-1820
  • 19 Gaita F, Corsinovi L, Anselmino M. et al. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J Am Coll Cardiol 2013; 62 (21) 1990-1997
  • 20 Crosta F, Desideri G, Marini C. Leukoaraiosis is an independent predictor of intracranial hemorrhage in patients with atrial fibrillation. J Thromb Thrombolysis 2019; 47 (04) 527-532
  • 21 Russo C, Jin Z, Liu R. et al. LA volumes and reservoir function are associated with subclinical cerebrovascular disease: the CABL (Cardiovascular Abnormalities and Brain Lesions) study. JACC Cardiovasc Imaging 2013; 6 (03) 313-323
  • 22 Wykretowicz M, Katulska K, Zwanzig M. et al. Association of left atrial fibrosis with aortic excess pressure and white matter lesions. Scand Cardiovasc J 2019; 53 (06) 317-322
  • 23 Nakanishi K, Jin Z, Homma S. et al. Left ventricular mass-geometry and silent cerebrovascular disease: the Cardiovascular Abnormalities and Brain Lesions (CABL) study. Am Heart J 2017; 185: 85-92
  • 24 de Souza JM, Domingues RC, Cruz Jr LC, Domingues FS, Iasbeck T, Gasparetto EL. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with T2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 2008; 29 (01) 154-158
  • 25 Vernooij MW, van der Lugt A, Ikram MA. et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008; 70 (14) 1208-1214
  • 26 Michałowska I, Furmanek MI, Smaga E. et al. Evaluation of brain lesions in patients after coronary artery bypass grafting using MRI with the emphasis on susceptibility-weighted imaging. Kardiochir Torakochirurgia Pol 2015; 12 (01) 1-7
  • 27 Patel N, Banahan C, Janus J. et al. Perioperative cerebral microbleeds after adult cardiac surgery. Stroke 2019; 50 (02) 336-343
  • 28 Haji S, Planchard R, Zubair A. et al. The clinical relevance of cerebral microbleeds in patients with cerebral ischemia and atrial fibrillation. J Neurol 2016; 263 (02) 238-244
  • 29 Song TJ, Kim J, Song D. et al. Association of cerebral microbleeds with mortality in stroke patients having atrial fibrillation. Neurology 2014; 83 (15) 1308-1315
  • 30 Madhavan M, Graff-Radford J, Piccini JP, Gersh BJ. Cognitive dysfunction in atrial fibrillation. Nat Rev Cardiol 2018; 15 (12) 744-756
  • 31 Gordon RJ, Quagliarello B, Lowy FD. Ventricular assist device-related infections. Lancet Infect Dis 2006; 6 (07) 426-437
  • 32 Murase S, Okazaki S, Yoshioka D. et al. Abnormalities of brain imaging in patients after left ventricular assist device support following explantation. J Heart Lung Transplant 2020; 39 (03) 220-227
  • 33 Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015; 17 (01) 17-30
  • 34 Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet 2016; 387 (10038): 2641-2654
  • 35 Čelutkienė J, Vaitkevičius A, Jakštienė S, Jatužis D. Expert opinion-cognitive decline in heart failure: more attention is needed. Card Fail Rev 2016; 2 (02) 106-109
  • 36 Wollner L, McCarthy ST, Soper ND, Macy DJ. Failure of cerebral autoregulation as a cause of brain dysfunction in the elderly. BMJ 1979; 1 (6171): 1117-1118
  • 37 Gruhn N, Larsen FS, Boesgaard S. et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001; 32 (11) 2530-2533
  • 38 Lavy S, Stern S, Melamed E, Cooper G, Keren A, Levy P. Effect of chronic atrial fibrillation on regional cerebral blood flow. Stroke 1980; 11 (01) 35-38
  • 39 Totaro R, Corridoni C, Marini C, Marsili R, Prencipe M. Transcranial Doppler evaluation of cerebral blood flow in patients with paroxysmal atrial fibrillation. Ital J Neurol Sci 1993; 14 (06) 451-454
  • 40 Anselmino M, Scarsoglio S, Saglietto A, Gaita F, Ridolfi L. Transient cerebral hypoperfusion and hypertensive events during atrial fibrillation: a plausible mechanism for cognitive impairment. Sci Rep 2016; 6: 28635
  • 41 Lee WJ, Jung KH, Ryu YJ. et al. Association of cardiac hemodynamic factors with severity of white matter hyperintensities in chronic valvular heart disease. JAMA Neurol 2018; 75 (01) 80-87
  • 42 Deckers K, Schievink SHJ, Rodriquez MMF. et al. Coronary heart disease and risk for cognitive impairment or dementia: systematic review and meta-analysis. PLoS One 2017; 12 (09) e0184244
  • 43 Jaszke-Psonka M, Piegza M, Ścisło P. et al. Cognitive impairment after sudden cardiac arrest. Kardiochir Torakochirurgia Pol 2016; 13 (04) 393-398
  • 44 Cannon JA, Moffitt P, Perez-Moreno AC. et al. Cognitive impairment and heart failure: systematic review and meta-analysis. J Card Fail 2017; 23 (06) 464-475
  • 45 Xie W, Zheng F, Yan L, Zhong B. Cognitive decline before and after incident coronary events. J Am Coll Cardiol 2019; 73 (24) 3041-3050
  • 46 Kivipelto M, Helkala EL, Laakso MP. et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ 2001; 322 (7300): 1447-1451
  • 47 Freitag MH, Peila R, Masaki K. et al. Midlife pulse pressure and incidence of dementia: the Honolulu-Asia Aging Study. Stroke 2006; 37 (01) 33-37
  • 48 Hernán MA, Alonso A, Logroscino G. Cigarette smoking and dementia: potential selection bias in the elderly. Epidemiology 2008; 19 (03) 448-450
  • 49 Tolppanen AM, Lavikainen P, Solomon A. et al. History of medically treated diabetes and risk of Alzheimer disease in a nationwide case-control study. Diabetes Care 2013; 36 (07) 2015-2019
  • 50 Luchsinger JA, Cheng D, Tang MX, Schupf N, Mayeux R. Central obesity in the elderly is related to late-onset Alzheimer disease. Alzheimer Dis Assoc Disord 2012; 26 (02) 101-105
  • 51 Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later. Dement Geriatr Cogn Disord 2009; 28 (01) 75-80
  • 52 Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA 1995; 274 (23) 1846-1851
  • 53 Gottesman RF, Schneider AL, Albert M. et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol 2014; 71 (10) 1218-1227
  • 54 Knopman D, Boland LL, Mosley T. et al; Atherosclerosis Risk in Communities (ARIC) Study Investigators. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology 2001; 56 (01) 42-48
  • 55 Williamson W, Lewandowski AJ, Forkert ND. et al. Association of cardiovascular risk factors with MRI indices of cerebrovascular structure and function and white matter hyperintensities in young adults. JAMA 2018; 320 (07) 665-673
  • 56 Ma Y, Song A, Viswanathan A. et al. Blood pressure variability and cerebral small vessel disease: a systematic review and meta-analysis of population-based cohorts. Stroke 2020; 51 (01) 82-89
  • 57 Levine DA, Wadley VG, Langa KM. et al. Risk factors for poststroke cognitive decline: the REGARDS study (reasons for geographic and racial differences in stroke). Stroke 2018; 49 (04) 987-994
  • 58 Washida K, Kowa H, Hamaguchi H, Kanda F, Toda T. Validation of the R2CHADS2 and CHADS2 scores for predicting post-stroke cognitive impairment. Intern Med 2017; 56 (20) 2719-2725
  • 59 Toni D, Di Angelantonio E, Di Mascio MT, Vinisko R, Bath PM. PRoFESS Study Group. Types of stroke recurrence in patients with ischemic stroke: a substudy from the PRoFESS trial. Int J Stroke 2014; 9 (07) 873-878
  • 60 Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond) 2017; 131 (11) 1059-1068
  • 61 Johansen MC, Langton-Frost N, Gottesman RF. The role of cardiovascular disease in cognitive impairment. Curr Cardiovasc Risk Rep 2011; 5 (05) 407-412
  • 62 Jacobs V, Woller SC, Stevens S. et al. Time outside of therapeutic range in atrial fibrillation patients is associated with long-term risk of dementia. Heart Rhythm 2014; 11 (12) 2206-2213
  • 63 Friberg L, Rosenqvist M. Less dementia with oral anticoagulation in atrial fibrillation. Eur Heart J 2018; 39 (06) 453-460
  • 64 Kapadia SR, Kodali S, Makkar R. et al; SENTINEL Trial Investigators. Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol 2017; 69 (04) 367-377
  • 65 Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003; 348 (13) 1215-1222
  • 66 Chen LY, Lopez FL, Gottesman RF. et al. Atrial fibrillation and cognitive decline-the role of subclinical cerebral infarcts: the atherosclerosis risk in communities study. Stroke 2014; 45 (09) 2568-2574
  • 67 Rydén L, Zettergren A, Seidu NM. et al. Atrial fibrillation increases the risk of dementia amongst older adults even in the absence of stroke. J Intern Med 2019; 286 (01) 101-110
  • 68 Murao K, Rossi C, Cordonnier C. Intracerebral haemorrhage and cognitive decline. Rev Neurol (Paris) 2013; 169 (10) 772-778
  • 69 Koivunen RJ, Harno H, Tatlisumak T, Putaala J. Depression, anxiety, and cognitive functioning after intracerebral hemorrhage. Acta Neurol Scand 2015; 132 (03) 179-184
  • 70 Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130 (Pt 8): 1988-2003
  • 71 Gutierrez A, Norby FL, Maheshwari A. et al. Association of abnormal P-wave indices with dementia and cognitive decline over 25 years: ARIC-NCS (the atherosclerosis risk in communities neurocognitive study). J Am Heart Assoc 2019; 8 (24) e014553
  • 72 Zheng L, Mack WJ, Chui HC. et al. Coronary artery disease is associated with cognitive decline independent of changes on magnetic resonance imaging in cognitively normal elderly adults. J Am Geriatr Soc 2012; 60 (03) 499-504
  • 73 Vogels RL, Scheltens P, Schroeder-Tanka JM, Weinstein HC. Cognitive impairment in heart failure: a systematic review of the literature. Eur J Heart Fail 2007; 9 (05) 440-449
  • 74 Alosco ML, Brickman AM, Spitznagel MB. et al. Independent and interactive effects of blood pressure and cardiac function on brain volume and white matter hyperintensities in heart failure. J Am Soc Hypertens 2013; 7 (05) 336-343
  • 75 Fendler TJ, Spertus JA, Gosch KL. et al. Incidence and predictors of cognitive decline in patients with left ventricular assist devices. Circ Cardiovasc Qual Outcomes 2015; 8 (03) 285-291
  • 76 Bhat G, Yost G, Mahoney E. Cognitive function and left ventricular assist device implantation. J Heart Lung Transplant 2015; 34 (11) 1398-1405
  • 77 Hachinski VC, Lassen NA, Marshall J. Multi-infarct dementia. A cause of mental deterioration in the elderly. Lancet 1974; 2 (7874): 207-210
  • 78 Román GC, Tatemichi TK, Erkinjuntti T. et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43 (02) 250-260
  • 79 Galvin JE, Sadowsky CH. NINCDS-ADRDA. Practical guidelines for the recognition and diagnosis of dementia. J Am Board Fam Med 2012; 25 (03) 367-382
  • 80 Owens DK, Davidson KW, Krist AH. et al; US Preventive Services Task Force. Screening for cognitive impairment in older adults: US preventive services task force recommendation statement. JAMA 2020; 323 (08) 757-763
  • 81 Gallagher R, Sullivan A, Burke R. et al. Mild cognitive impairment, screening, and patient perceptions in heart failure patients. J Card Fail 2013; 19 (09) 641-646
  • 82 Silbert BS, Scott DA, Evered LA, Lewis MS, Maruff PT. Preexisting cognitive impairment in patients scheduled for elective coronary artery bypass graft surgery. Anesth Analg 2007; 104 (05) 1023-1028
  • 83 Lovell J, Pham T, Noaman SQ, Davis MC, Johnson M, Ibrahim JE. Self-management of heart failure in dementia and cognitive impairment: a systematic review. BMC Cardiovasc Disord 2019; 19 (01) 99
  • 84 Dubois B, Feldman HH, Jacova C. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6 (08) 734-746
  • 85 Jack Jr CR, Bennett DA, Blennow K. et al; Contributors. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018; 14 (04) 535-562
  • 86 Johansen MC, Mosley TH, Knopman DS. et al. Associations between left ventricular structure, function, and cerebral amyloid: the ARIC-PET study. Stroke 2019; 50 (12) 3622-3624
  • 87 Gottesman RF, Albert MS, Alonso A. et al. Associations between midlife vascular risk factors and 25-year incident dementia in the atherosclerosis risk in communities (ARIC) cohort. JAMA Neurol 2017; 74 (10) 1246-1254
  • 88 Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T. et al. APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms. Mol Psychiatry 2014; 19 (11) 1243-1250
  • 89 Schmechel DE, Saunders AM, Strittmatter WJ. et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90 (20) 9649-9653
  • 90 Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer's disease. Neuron 2009; 63 (03) 287-303
  • 91 Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2019; 51 (02) 165-176
  • 92 Montagne A, Nation DA, Sagare AP. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020; 581 (7806): 71-76
  • 93 de Havenon A, Majersik JJ, Tirschwell DL, McNally JS, Stoddard G, Rost NS. Blood pressure, glycemic control, and white matter hyperintensity progression in type 2 diabetics. Neurology 2019; 92 (11) e1168-e1175
  • 94 Levine DA, Gross AL, Briceño EM. et al. Association between blood pressure and later-life cognition among black and white individuals. JAMA Neurol 2020; 77 (07) 810-819
  • 95 Smith PJ, Blumenthal JA, Hoffman BM. et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 2010; 72 (03) 239-252
  • 96 Davis KAS, Bishara D, Perera G, Molokhia M, Rajendran L, Stewart RJ. Benefits and harms of statins in people with dementia: a systematic review and meta-analysis. J Am Geriatr Soc 2020; 68 (03) 650-658
  • 97 Kim MY, Jung M, Noh Y. et al. Impact of statin use on dementia incidence in elderly men and women with ischemic heart disease. Biomedicines 2020; 8 (02) E30
  • 98 Zhang X, Wen J, Zhang Z. Statins use and risk of dementia: a dose-response meta analysis. Medicine (Baltimore) 2018; 97 (30) e11304
  • 99 Walker KA, Sharrett AR, Wu A. et al. Association of midlife to late-life blood pressure patterns with incident dementia. JAMA 2019; 322 (06) 535-545
  • 100 Gottesman RF, Grega MA, Bailey MM. et al. Association between hypotension, low ejection fraction and cognitive performance in cardiac patients. Behav Neurol 2010; 22 (1-2): 63-71
  • 101 A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2017; 377 (25) 2506
  • 102 Williamson JD, Pajewski NM, Auchus AP. et al; SPRINT MIND Investigators for the SPRINT Research Group. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 2019; 321 (06) 553-561
  • 103 Nasrallah IM, Pajewski NM, Auchus AP. et al; SPRINT MIND Investigators for the SPRINT Research Group. Association of intensive vs standard blood pressure control with cerebral white matter lesions. JAMA 2019; 322 (06) 524-534
  • 104 Lehtisalo J, Levälahti E, Lindström J. et al. Dietary changes and cognition over 2 years within a multidomain intervention trial-The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement 2019; 15 (03) 410-417
  • 105 Andrieu S, Guyonnet S, Coley N. et al; MAPT Study Group. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol 2017; 16 (05) 377-389
  • 106 Moll van Charante EP, Richard E, Eurelings LS. et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet 2016; 388 (10046): 797-805
  • 107 Patel N, Gluck J. Is Entresto good for the brain?. World J Cardiol 2017; 9 (07) 594-599
  • 108 Zuccalà G, Pedone C, Cesari M. et al. The effects of cognitive impairment on mortality among hospitalized patients with heart failure. Am J Med 2003; 115 (02) 97-103