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Objective Clinical decision support (CDS) can contribute to quality and safety. Prior
work has shown that errors in CDS systems are common and can lead to unintended
consequences. Many CDS systems use Boolean logic, which can be difficult for CDS
analysts to specify accurately. We set out to determine the prevalence of certain types
of Boolean logic errors in CDS statements.

Methods Nine health care organizations extracted Boolean logic statements from
their Epic electronic health record (EHR). We developed an open-source software tool,
which implemented the Espresso logic minimization algorithm, to identify three
classes of logic errors.

Results Participating organizations submitted 260,698 logic statements, of which
44,890 were minimized by Espresso. We found errors in 209 of them. Every
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participating organization had at least two errors, and all organizations reported that
they would act on the feedback.

Discussion An automated algorithm can readily detect specific categories of Boolean
CDS logic errors. These errors represent a minority of CDS errors, but very likely require
correction to avoid patient safety issues. This process found only a few errors at each
site, but the problem appears to be widespread, affecting all participating

organizations.

Conclusion Both CDS implementers and EHR vendors should consider implementing
similar algorithms as part of the CDS authoring process to reduce the number of errors

in their CDS interventions.

Background and Significance

When properly implemented, clinical decision support (CDS)
systems contribute to improvements in quality and safety.'
However, in recent work, our research team identified a large
number of implementation errors and technical malfunc-
tions in CDS systems.®"'% Causes for these errors vary, and
include improper definition of value sets, terminology
changes, and system upgrades.”%10
Many CDS systems allow for the construction of rules from
logical terms, linked through a Boolean logic statement.' 12
shows a representative example of a decision support
rulein this form. This logic statement represents the core of the
United States Centers for Disease Control and Prevention
Advisory Committee on Immunization Practices recommen-
dation on influenza vaccination,'® and is similar to the form
used in many electronic health record (EHR) systems. If
desired, some terms could be defined further (for example,
the second term could have a nested definition with its own
logic statement, for example, “patient allergic to eggs OR
patient has a fever”). The implementer also has the freedom
to vary the construction. For example, in this case, the second
term is phrased in the negative, but the term could be in the
positive (patient has a contraindication to influenza vaccina-
tion), in which case it would be necessary to negate this termin
the logic statement, as was done with the third statement.
Boolean logic, named after the mathematician George
Boole (1815-1864), is a logical algebra which evaluates all
statements, connected through logical operators like “and,”
“or,” and “not,” as true or false. A variety of fields use Boolean
logic, including computer science, electrical engineering, logic,
mathematics, and information retrieval, to create unambigu-
ous and precisely specified statements of logic.'# Boolean logic

statements are inherently computable. Logic gates or micro-
processors can evaluate these statements, so they are an
attractive (and likely necessary) form of knowledge represen-
tation for computer-based CDS. However, humans frequently
struggle with the task of accurately translating intended clini-
cal rules into Boolean logic statements.'>""”

Consistent with this experience, our own research sug-
gests that errors in Boolean logic are a recurring cause of CDS
malfunctions.® Although many of these errors have complex
etiologies and are often difficult to identify, a subset of them
involve logic statements that are objectively defective and
which are algorithmically detectable. Three categories with
example statements are:

* Always True
Example: 1 or not 1. This statement is a tautology. It is
always true and does not depend on the value of term 1. A
hypothetical clinical example would be “Patient has diabe-
tes or patient does not have diabetes.”

 Always False
Example: 1 and not 1. This statement is always false and
represents a logic contradiction. A hypothetical clinical
example would be “Patient has diabetes and patient does
not have diabetes.”

* Absorption
Example: 1 or (1 and 2). This statement contains a
Boolean absorption and is thus logically redundant. It is
true when term 1 is true and false when term 1 is false,
and does not depend on the value of term 2.18A hypothet-
ical clinical example would be “Patient has diabetes or
patient has both diabetes and hypertension,” which really
just identifies patients with diabetes, regardless of whether
they have hypertension.

Terms:
1. Patient is at least six months old

Boolean logic statement:
1and 2 and not 3

2. Patient does not have a contraindication to influenza vaccination
3. Patient has had an influenza vaccination this flu season

Representative example of clinical decision support (CDS) logic for an influenza vaccination reminder.
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Participating sites

Site Location Number of logic
statements
extracted

Atrius Health Boston, MA 23,169

Geisinger Health Danville, PA 24,007

Ochsner Health
System

New Orleans, LA 5,961

Oregon Health & Portland, OR 35,090
Science University

Partners HealthCare Boston, MA 49,524
University of San Diego, CA 42,092
California

San Diego

UT Southwestern Dallas, TX 27,447
Medical Center

Vanderbilt University Nashville, TN 29,233
Medical Center

Weill Cornell New York, NY 24,175
Medicine

In this article, we develop and evaluate logic minimization
and evaluation software to identify these types of objective logic
errors in real-world decision support knowledge bases from
nine health care provider organizations across the United States.

Objectives

CDS can contribute to quality and safety. Prior work has
shown that errors in CDS systems are common and can lead
to unintended consequences. Many CDS systems use Boolean
logic, which can be difficult for users to specify accurately.
We set out to determine the prevalence of certain types of
Boolean logic errors in CDS knowledge bases.

Methods

We identified nine members of the Clinical Informatics
Research Collaborative (CIRCLE)'® representing diverse
healthcare provider organizations across the United States
that used an EHR developed by Epic Systems (Verona, Wis-
consin, United States), as shown in . We focused on
this EHR because it explicitly stores logic statements sepa-
rate from the control structure of the program, making them
readily extractable. Some EHRs implement a domain-specific
language for CDS which makes the Boolean logic statement

Term 1 Term 2 Output 1
T T T
T F T
& T =
F F F

implicit in the control structure of the program (and thus
harder to extract). Others limit the depth of conjunction and
disjunction to a single layer, limiting the complexity of logic
which can be represented but also making it less likely for the
author to create these types of defects.

We provided instructions to these organizations about how
to extract logic statements from Best Practice Advisories
(BPAs; Epic’s name for rule-based alerts) and rules (a generic
logic concept, used in BPAs and many other system functions)
from their production environment.?? BPAs, and their corre-
sponding logic statements, are developed by CDS authors at
each participating site or, in certain cases, by Epic directly.
Users who access the Epic BPA authoring tools have Epic-
provided training in building CDS and using Epic’s tools.

We then developed an open source software tool (available at
https://github.com/skyeaaron/LogicMinimizer) which uses the
PYEDA?! Python package and the Espresso heuristic logic
minimization algorithm.?%%3 The Espresso algorithm was origi-
nally designed to take digital logic circuit designs that consist of
interconnected sets of AND, OR, and NOT logic gates and reduces
their complexity while keeping the same output. In this case, we
apply Espresso to CDS logic statements, which, though imple-
mented in software rather than hardware, can be thought of as
equivalent to the ANDs, ORs, and NOTSs of digital circuits. Given
the generality of Boolean logic, the algorithm readily applies to
logic statements from CDS to identify always true, always false,
and absorption errors. shows an illustration of the
algorithm. Consider the hypothetical example we gave above “1
OR (1 AND 2)” which corresponds to “patient has diabetes or has
both diabetes and hypertension.” When the Espresso algorithm
operates, it first creates a truth table that represents the
statement. It then attempts to minimize the truth table—in
this case, observing that the output depends only onTerm 1, and
not on Term 2—the output of the algorithm is then a minimized
logic statement—in this case “1 OR (1 AND 2)” is minimized,
simply, to Term 1, which makes Term 2 an absorbed variable.
The algorithm ran on a standard personal computer (PC) and
took less than 1 hour per organization.

The program categorizes each statement into one of nine
categories: “And/Or/Not,” “At Least/At Most/Exactly,” “Inval-
id Statement,” “Always True,” “Always False,” “Absorption,”
“No Redundancy,” “Timed Out,” or “Non-Zero Exit Code.”

The program removes statements the Espresso algorithm
cannot process. There were three categories of these state-
ments. First, as an alternative to more complicated Boolean
logic statements, Epic allows for single operator logic state-
ments like “and,” “or,” and “not” which logically conjoin or

Term 1 Output 1
Espresso
T T
Algorithm
E &

Example Espresso minimization of the redundant Boolean logic statement: 1 OR (1 AND 2). The left side shows a truth table, which reveals
that Output 1 depends only on Term 1—Term 2 is irrelevant to the output. Espresso minimizes this redundant statement to Term 1 only and
produces a new truth table (shown on the right) which is equivalent to, but simpler than, the truth table on the left.
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disjoin all terms in a statement. These statements cannot
contain the Boolean logic errors we are studying, so we filtered
them out. Second, Epic allows for quantified statements like “at
least 3 terms from thelist 1,2, 3,4, 5,6, 7, or 8.” This statement
evaluates true when at least three of the first eight terms are
true. These statements are not part of standard Boolean
algebra, and the Espresso algorithm cannot process them, so
we excluded them as well. Finally, some statements contained
logic that is not possible to parse, such as “1 AND 2 AND AND 4
AND NOT 3” (the presence of “AND AND” makes it impossible
to parse this statement). These unparseable statements require
correction, even for Epic to properly use them. We excluded
them before running the minimization. The Espresso minimi-
zation is run on all remaining statements.

In extremely rare cases, the minimization cannot be com-
pleted, either because the statement exceeds a user-specified
timeout or because of some other error in the logic of the
program. These statements are categorized as “Timed Out”
(when the statement timed out) or “Non-Zero Exit Code”
(when the program failed, but did not provide any detail about
the failure mode except for a nonzero exit code). Based on
discussions with the implementor of the Espresso algorithm,
they appear to represent cases where the logic tree is not able
to be properly mapped due to limitations of the algorithm,
causing it to endlessly cycle and run out of memory. To ensure
that we were not encountering a simple memory capacity
limit, we reran these statements on a Linux cluster with 498

Detection of Boolean Logic Errors Wright et al.

gigabytes of memory. The same statements that failed on the
office PC also failed on the cluster, confirming that they are not
analyzable within reasonable bounds (or likely at all, within
the limits of the algorithm implementation).

Results

Participating organizations reported that it was very easy to
extract the logic statements following the instructions pro-
vided—in most cases, the hardest step was finding an analyst
with the proper security permissions—the extraction itself
took only seconds to run, and the logic statements were then
sent to our research coordinator.
shows the overall flow of the study. Sites submit-
ted a total of 260,698 Boolean logic statements. Note that
215,680 were and/or/not statements, which cannot contain
the types of redundancies we are studying. Eighty-three
contained quantifiers so were not purely Boolean, and 9
contained errors that made them unparseable. Of the
remaining 44,926 a total of 36 failed to minimize due to
the algorithmic limitation described above. An example of a
statement that could not be minimized is:
(10OR20R30R40R50R60R70R80R90OR100R110OR
120R130R140R150R 16 OR17)AND (18 OR 19 OR 20 OR
21 0R220R230R240R250R260R270R280R290R 30
OR 31 0OR320R330R34)AND ((18 AND 35 AND 36 AND 37
AND 38) OR (19 AND 39 AND 40 AND 41 AND 42) OR (20 AND

Statements

(n=260,698)
Not processed (n=215,772)

J ¢ And/Or/Not (n=215,680)

*  Atleast/At most/Exactly (n=83)
*  Error: Unparseable (n=9)
Could not be minimized (n=36)
* Timed out (n=4)
* Ran out of memory (n=32)

Minimized

(n=44,890)

X

Logic error found during
minimization (n=209)

l . |

|

No logic error found during
minimization (n=44,681)

Always False Absorption
(n=9) (n=173)

Always True
(n=27)

Processing flow diagram showing types of errors.
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Logic statement reductions showing examples of errors

| Logic statement ‘ Clinical meaning

Example 1

Original 1 OR (1 AND 2) (Patient has no ideal body weight on file) OR (Patient has no ideal body weight
on file AND Patient has ideal body weight on file)

Reduced 1 Patient has no ideal body weight on file (result depends only on element 1;
the value of element 2 is irrelevant)

Example 2

Original 1 OR (1 AND 2 AND 3) (Ambulatory referral order to care management) OR (Ambulatory referral order to
care management AND Referral order scheduling status is not scheduled, expired,
appointment canceled, unable to schedule AND Referral order does not have a
Misc Flag)

Reduced 1 Ambulatory referral order to care management (result depends only on element 1;
the values of elements 2 or 3 are irrelevant)

Example 3

Original 1 AND (NOT 1) The clinical encounter is an inpatient encounter AND the clinical encounter is not
an inpatient encounter

Reduced FALSE Always false (result does not depend on the value of its only input, 1)

43 AND 44 AND 45 AND 46) OR (21 AND 47 AND 48 AND 49
AND 50) OR (22 AND 51 AND 52 AND 53 AND 54) OR (23 AND
55 AND 56 AND 57 AND 58) OR (24 AND 59 AND 60 AND 61
AND 62) OR (25 AND 63 AND 64 AND 65 AND 66) OR (26 AND
67 AND 68 AND 69 AND 70) OR (27 AND 71 AND 72 AND 73
AND 74) OR (28 AND 75 AND 76 AND 77 AND 78) OR (29 AND
79 AND 80 AND 81 AND 82) OR (30 AND 83 AND 84 AND 85
AND 86) OR (31 AND 87 AND 88 AND 89 AND 90) OR (32 AND
91 AND 92 AND 93 AND 94) OR (33 AND 95 AND 96 AND 97
AND 98) OR (34 AND 99 AND 100 AND 101 AND 102))

Of the 44,890 logic statements successfully minimized by
Espresso, there were 209 instances of errors, representing
0.08% of all statements submitted and 0.5% of minimized
logic statements. Nine statements were always false, 27
statements were always true, and 173 statements had an
absorption. shows three examples of errors that
were identified.

Every participating site had at least two Boolean logic
errors found during logic minimization, and the number of
errors ranged from 2 to 51. We sent a report identifying the
logical errors following our analysis to each site. All of the
sites stated that the report was accurate and useful, and that
they planned to take action based on the report. None of the
sites reported prior awareness of any of the errors found by
the system.

Discussion

This study is the first to describe an algorithm for identifying
an important class of CDS logic errors. Though uncommon,
detectable errors were widespread, occurring at each study
site. These logic errors may result in incorrect alerts displaying
to users (particularly likely for logic statements which are
always true), or not displaying when they should (likely when
logic statements are always false). Redundant logic statements
are also a marker of potential errors. In redundant statements,
not all the included clinical elements affect the result of the

Applied Clinical Informatics  Vol. 12 No. 1/2021 © 2021. Thieme. All rights reserved.

evaluation—if the logic statement developer intended the
unused elements to affect the result, it is likely that the
redundant statement does not reflect his or her intent. These
types of errors could lead CDS to fire in cases where it should
not, or not fire in cases where it should, which could lead users
to make an error (or omission) that could lead to patient
harm®?* and contribute to alert fatigue.?>2°

We developed a portable, effective software tool to identify
these classes of logic errors. The results are easily interpretable
and actionable. Healthcare organizations using Boolean logic
for implementing CDS alerts should run these algorithms to
detect potential errors. EHR developers that support Boolean
logic should consider implementing these, or similar, algo-
rithms within their knowledge authoring environments as
“linters” (i.e., analysis tools that can identify likely or possible
programming errors) to help logic developers identify poten-
tial errors before deploying the logic in the clinical setting.2’
These algorithms could also be implemented in EHR-agnostic
authoring tools, such as CDS Connect.?®

It is intriguing that all sites had demonstrable errors, yet
none were aware of them. In our previous work on CDS
anomalies, we learned that clinicians may not be aware of
such errors® and showed that many types of build and concep-
tualization errors were common.’ We should note all of the
sites had robust CDS development processes, performed by
experienced clinicians, informaticians, and programmers who
were also responsible for conducting rigorous testing prior to
release. None of these errors were identified. It may be benefi-
cial to include logic analysis periodically and prospectively
using such tools to assess CDS accuracy rather than wait for
someone to detect a problem or worse, a patient to be harmed.

Limitations

Our study has several limitations. First, we limited the study
to organizations using Epic Systems’ EHRs. Since most EHRs
use some form of Boolean logic for CDS, it should be possible
to use the same algorithm and program we developed to
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analyze logic from any EHR. The program requires logic
statements in a general format like “1 and 2 or 3,” so it is
not specific to Epic. However, one would need to build
queries to extract the logic statements from other EHRs.
For EHRs that explicitly code their Boolean rule logic, these
queries are likely to be simple. However, some EHRs use a
domain-specific language, where the control flow of the
program first needs analysis to then model it as a Boolean
logic statement—this is more complex, but algorithms for
such transformations do exist.?>3! Second, our program
only detects a subclass of logic errors, though that subclass
consists of statements that are clearly and unambiguously
erroneous. Our experience suggests that other types of logic
errors are also prevalent. For example, an alert that searched
for patients with “most recent Body Mass Index (BMI) < 25”
AND “most recent BMI > 30” would also be unsatisfiable but
would not be detected by our algorithm. The class of Boolean
logic statement errors detectable through our software
represents a relatively small fraction of all CDS logic errors.
However, these errors can be readily detected through
simple algorithmic checks, using open source software,
and almost always deserve further analysis and correction,
so we believe that flagging them is highly useful.

Third, we were not able to evaluate the effect of these logic
errors on patient safety or healthcare quality. To simplify the
rule collection procedure and only obtain the minimum
necessary information to conduct the study, each site sub-
mitted the logic statements used in their CDS, but not the
details of the corresponding CDS interventions themselves,
nor did we collect data on alert firing rates or patient impact.
Finally, we did not collect data on sites’ preexisting testing or
review processed for Boolean logic statements, so we were
not able to assess how our method corresponded to existing
processes.

Future work should look at other EHRs and add additional
heuristics and methods for detecting potential logic errors,
testing logic statements, and facilitating the development of
accurate logic statements to detect and prevent other cate-
gories of logic errors, with this form of Boolean verification
as one of several checks. Other types of logic errors may be
detectable through additional automated means (for exam-
ple, an alert that specifies a condition like “patient is under
18 and is over 65”), while others may be difficult to detect
without human domain knowledge (“patient is pregnant and
has prostatitis”).

Conclusion

We implemented an algorithm capable of identifying three
specific types of logic errors in CDS statements. An evalua-
tion of logic statements from nine health care organizations
found errors in statements submitted by all participants.
Both CDS implementers and EHR vendors should consider
implementing similar algorithms to reduce the number of
errors in their CDS interventions. Proactively detecting and
fixing errors, even minor ones, helps make the EHR more
reliable and trustworthy—if clinicians find errors, they dis-
trust and lose faith in computer-generated advice or recom-

Detection of Boolean Logic Errors Wright et al.

mendations.>? To maintain their trust and respect, CDS
implementers must strive to create artifacts that are free
from errors. Perfectly functioning CDS places us one step
closer to providing the safest and highest quality patient care
possible.

Clinical Relevance Statement

Decision support, when working well, can improve quality
and safety. This article describes a technique for finding a
particular class of decision support issues where logic is
misspecified. It is important to correct these logic errors.

Multiple-Choice Questions

1. Does the logic statement:
1 AND NOT 1
Contain a Boolean logic error of the type discussed in this
paper?
a. No.
b. Yes, it is always true.
c. Yes, it is always false.
d. Yes, it has another type of absorption.

Correct Answer: No statement can be both true and false
(this is called the “law of the excluded middle” in philos-
ophy). Thus, this logic statement is a contradiction, and
will always evaluate as false, so an alert that used it would
never fire. This is one of the types of errors that our
algorithm detects.

2. Consider the logic statement:

1 AND (1 OR 2)

where term 1 represents “patients with diabetes” and

term 2 represents “patients with heart failure.” The

statement contains a Boolean absorption which would

be flagged by the algorithm. In this case, term “2” is

absorbed, so the alert will fire whenever term 1 is true

and does not consider term 2 at all. If the alert is intended

to fire only for patients who have both diabetes and heart

failure, what would happen if the error was not

corrected?

a. The alert would fire incorrectly for patients with
diabetes who do not also have heart failure.

b. The alert would fire incorrectly for patients with heart
failure who do not also have diabetes.

c. The alert would fire for all patients.

d. The alert would never fire.

Correct Answer: The rule author added two criteria to the
alert logic—one that looks to determine whether the
patient has heart failure, and one that checks to see if
the patient has diabetes. It is reasonable to infer that the
builder intended the alert to check both of these—either
to find patients with both diabetes and heart failure, or
perhaps one or the other of diabetes or heart failure.
Regardless of their intent, the logic statement 1 AND (1 OR
2) is true for patients who have diabetes, and false for
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patients who do not have diabetes. Heart failure is irrele-
vant to the logic evaluation. The logic statement can be
reduced from “1 AND (1 OR 2)” to “1.” Since the CDS
author likely intended to include “heart failure” some-
where in the logic, there is a good chance that this
represents a logic error that needs to be fixed. This type
of error is detected by our algorithm.

Human and/or animal subjects were not included in this
project.

AW. wrote the manuscript and conceived the study
design. S.A. wrote the logic minimization program. D.F.
acted as a tester for the logic minimization program. All
authors provided data. All authors provided critical revi-
sions for important intellectual content.
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