Characterization of Neuraminidase Inhibitors in Korean Papaver rhoeas Bee Pollen Contributing to Anti-Influenza Activities In Vitro

In-Kyoung Lee 1*, Byung Soon Hwang 1*, Dae-Won Kim 1, Ji-Yul Kim 1, E-Eum Woo 1, Yoon-Ju Lee 1, Hwa Jung Choi 2, Bong-Sik Yun 1

Affiliations
1 Division of Biotechnology and Advanced Institute of Environment and Bioscience, Chonbuk National University, Iksan-si, Republic of Korea
2 Department of Beauty Science, Kwangju Women’s University, Sanjeong-dong, Gwangsan-gu, Kwangju, Republic of Korea

Abstract
The active constituents of Korean Papaver rhoeas bee pollen conferring neuraminidase inhibitory activities (H1N1, H3N2, and H5N1) were investigated. Six flavonoids and one alkaloid were isolated and characterized by nuclear magnetic resonance and mass spectrometry data. These included kaempferol-3-sophoroside (1), kaempferol-3-neohesperidoside (2), kaempferol-3-sambubioside (3), kaempferol-3-glucoside (4), quercetin-3-sophoroside (5), luteolin (6), and chelianthifoline (7). All compounds showed neuraminidase inhibitory activities with IC50 values ranging from 10.7 to 151.1 µM. The most potent neuraminidase inhibitor was luteolin, which was the dominant content in the ethyl acetate fraction. All tested compounds displayed noncompetitive inhibition of H3N2 neuraminidase. Furthermore, compounds 1–7 all reduced the severity of virally induced cytopathic effects as determined by the Madin-Darby canine kidney cell-based assay showing antiviral activity with IC50 values ranging from 10.7 to 33.4 µM (zanamivir: 58.3 µM). The active compounds were quantified by high-performance liquid chromatography, and the total amount of compounds 1–7 made up about 0.592 g/100 g bee pollen, contributing a rich resource of a natural antiviral product.

Abbreviations
CPE: cytopathic effect
EDTA: ethylenediaminetetraacetic acid
HPLC: high-performance liquid chromatography
HA: hemagglutinin
MDCK: Madin-Darby canine kidney
MS: mass
NA: neuraminidase
NAI: neuraminidase inhibitors
NMR: nuclear magnetic resonance
ODS: octadecyl silica
SRB: Sulforhodamine B
TFA: trifluoroacetic acid
TI: therapeutic index

Introduction
Bee pollen is a granule-type material of agglutinated flower pollen made by worker honey bees with nectar and bee secretions. The resulting pollen is higher in nutritional value than untreated pollen, and is used as the primary source of protein for the bee hive. Bee pollen has been used in folk medicine from ancient times in many regions of the world for its medical properties to alleviate or cure conditions such as colds, flu, ulcers, and anemia [1]. Recently, biological effects such as antioxidant [2], anti-inflammation [3], antiallergy [4], antifungal [5], anticancer [6], chemopreventive [7], and antimutagenic [8] activities were also reported. Like other apicultural products, royal jelly, honey, and propolis, the chemical composition of bee pollen depends on the plant source, regional vegetation, season, and honeybee races at the site of collection. It is rich in carbohydrates, proteins, lipids, minerals, vitamins, and various organic compounds, including phenolic acids and flavonoids. Most flavonoids from bee pollen exist as glycosides and contain kaempferol or quercetin as aglycone parts. Other phenolic acids usually found in...
floral parts, such as triacylated spermidine, were identified as major constituents of bee pollen [9].

Influenza viruses contain two surface antigens, NA and HA. NA and HA both recognize carbohydrate structures and bind to terminal sialic acid units on the surface of the host cell. When the influenza virus replicates, the binding of HA to its receptor initiates viral entry into the host cell, where NA catalyzes the cleavage of sialic acid. Since NA plays an important role in replication, NA is considered to be one of the most promising areas of targeting for the treatment of influenza. In the past decade, many reports have investigated substances related to NA inhibition.

Results and Discussion

Influenza NA has been established as a primary drug target for the treatment of influenza infections. Cell culture-based assays for the anti-influenza activity of potential NAIs. Therefore, we first need to be performed to evaluate the cytotoxicity and to confirm the treatment of influenza infections. Cell culture-based assays. Influenza NA has been established as a primary drug target for the treatment of influenza. In the past decade, many reports have investigated substances related to NA inhibition. It was previously reported that flavonoids and (oligo) stilbenes are the most prominent natural products with NA inhibitory activity [10]. Therefore, pollen is considered one of the natural sources of NA inhibitors due to its high levels of polyphenols.

Papaver rhoeas L. is a species of flowering plant in the poppy family, Papaveraceae. It is sometimes mistaken for Papaver somniferum L., the opium poppy. It was reported that the flavonoids kaempferol, quercetin, luteolin, 8-hydroxyluteolin (hypolaetin), quercetin-3-glucoside (isoquercitrine), kaempferol-3-glucoside (astragalline), and quercetin-3-galactoside (hyperoside) were isolated from the methanol extract of the petals of Papaver rhoeas [11]. Although pollen has traditionally been used to treat the cold and flu, there are no reports of the antiviral activities of P. rhoeas bee pollen. In the present study, we investigated the active agents of Korean P. rhoeas bee pollen for inhibitory activity on NA from influenza virus A H1N1, H3N2, and H5N1, with an investigation of the anti-influenza viral activities in MDCK cells through a CPE reduction assay.

Chemical Structures

![Chemical structures of compounds 1–7 isolated from P. rhoeas bee pollen.](image)

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Table 1 Inhibitory effect of compounds 1–7 on neuraminidase activities and antiviral activity against influenza A virus in MDCK cells.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>NA inhibition IC₅₀ (µM)</th>
<th>Inhibition type (kᵢ, µM)</th>
<th>Cytotoxicity and antiviral activity (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H1N1</td>
<td>H5N1</td>
<td>H3N2</td>
</tr>
<tr>
<td>1</td>
<td>85.6 ± 1.4</td>
<td>111.6 ± 1.0</td>
<td>61.0 ± 0.7</td>
</tr>
<tr>
<td>2</td>
<td>56.2 ± 1.1</td>
<td>80.2 ± 4.8</td>
<td>51.6 ± 1.5</td>
</tr>
<tr>
<td>3</td>
<td>45.3 ± 1.9</td>
<td>51.2 ± 3.1</td>
<td>52.2 ± 2.9</td>
</tr>
<tr>
<td>4</td>
<td>36.3 ± 1.5</td>
<td>61.1 ± 2.1</td>
<td>54.0 ± 1.2</td>
</tr>
<tr>
<td>5</td>
<td>88.3 ± 3.0</td>
<td>75.1 ± 8.7</td>
<td>112.8 ± 8.2</td>
</tr>
<tr>
<td>6</td>
<td>10.7 ± 0.2</td>
<td>12.6 ± 0.8</td>
<td>25.6 ± 8.3</td>
</tr>
<tr>
<td>7</td>
<td>100.5 ± 9.2</td>
<td>151.1 ± 19.8</td>
<td>143.2 ± 8.9</td>
</tr>
<tr>
<td>Zanamivir</td>
<td>1.5 ± 0.2</td>
<td>3.4 ± 0.1 nM</td>
<td>1.9 ± 0.4 nM</td>
</tr>
</tbody>
</table>

Results were obtained from three independent experiments carried out in triplicate, and are expressed as the mean ± S.D.; * Concentration required to inhibit cell growth by 50%; ² concentration required to inhibit virus-induced CPE by 50%; ³ therapeutic index = CC₅₀/IC₅₀; ⁴ the compound used as the positive control; ⁵ not determined

Materials and Methods

P. rhoeas bee pollen was provided and authenticated by emeritus professor Kwang-Ryul Choe at Chungnam National University, Daejeon, Korea, in 2011. P. rhoeas bee pollen was collected by honey bees, Apis mellifera L., at Chungsan province, Korea, in May-July 2011. A voucher specimen (Y-2011-01) was deposited at the herbarium of Chonbuk National University, Jeonbuk, Korea.
High-performance liquid chromatography analysis

The qualitative and quantitative analyses of the methanol extract of *P. rhoeas* bee pollen were characterized by the HPLC photo-diode array detection (PDA) system. For qualitative analysis, samples (10 µL) were injected into an analytical ODS column. The mobile phase was composed of 0.04% trifluoro acetic acid in water (A) and methanol (B). The gradient conditions were as follows: 3 min, 20% B; 35 min, 50% B; 40 min, 50% B, with a flow rate of 1 mL/min and the detection at 207 nm. For quantitative analysis, the standard curves of compounds 1–7 were prepared over a concentration range of 31.25–250 µg/mL with four different concentration levels. Samples (15 µL) were injected into an analytical ODS column. The mobile phases and detection conditions were as follows: 20% aqueous methanol (0.04% TFA) for 1, 5, and 7, 25% aqueous methanol (0.04% TFA) for 2 and 3, 30% aqueous methanol (0.04% TFA) for 4, and 40% aqueous methanol (0.04% TFA) for 6. The detection wavelengths were 286 nm for 7, 254 nm for 5, 264 nm for 1–4, and 349 nm for 6. A line for each compound was plotted using linear regression of the peak area vs. concentration. The coefficient of correlation (r^2) was used to judge the linearity.

Extraction and isolation

The dried pollen (400 g) was extracted with 70% methanol (1 L × 3) for 24 h at room temperature, and the solution was concentrated under reduced pressure to obtain a crude extract (150 g). The extract was partitioned successively with *n*-hexane, chloroform, ethyl acetate, and butanol. The ethyl acetate fraction exhibited the most potent inhibitory activity against H1N1 neuraminidase. Therefore, the ethyl acetate fraction (3 g) was then subjected to a C18 Sepak cartridge eluting with a gradient of increasing methanol (10–100%) in water to give four fractions (Fr. I–IV) based on the silica TLC pattern and HPLC analysis. Fractions I and II were followed by reversed-phase preparative HPLC with 35% aqueous MeOH (0.04% TFA) and 40% aqueous MeOH (0.04% TFA), respectively, at a flow rate of 6 mL/min. Compounds 1 (t_R 34 min, 33.2 mg), 2 (t_R 44 min, 35.5 mg), 5 (t_R 22 min, 13.7 mg), and 3 (t_R 60 min, 26.1 mg) were isolated from fraction I, while 4 (t_R 79 min, 22.3 mg) was obtained from fraction II. Fraction III was chromatographed on a Sephadex LH-20 column with MeOH, and then purified by reversed-phase preparative HPLC with a 50–80% aqueous MeOH gradient (0.04% TFA) at a flow rate of 8 mL/min to yield 7 (t_R 26 min, 9 mg). Compound 6 (14.2 mg) was obtained by column chromatography of a silica gel eluted
with CHCl₃:MeOH (10:1) and a Sephadex LH-20 eluted with CHCl₃-MeOH (1:1) from fraction IV.

Neuraminidase inhibitory activity

Neuraminidase inhibitory activity was estimated using a previously reported fluorometric (FL) method, with some modifications [14]. Recombinant influenza A virus H1N1, H3N2, and H5N1 NAs were purchased from R&D systems. The substrate for the FL assays, 4-methylumbelliferyl-N-acetyl-neuraminic acid (MUNANA), is cleaved by NA to release N-acetyl neuraminic acid (NANA) and the fluorescent compound 4-methylumbelliferone (MU). Therefore, NA inhibition by an NA inhibitor causes a reduced fluorescence of the MU. The substrate, 50 µL of 0.2 mM MUNANA, was mixed with 90 µL of 50 mM Tris buffer (containing 200 mM NaCl, 5 mM CaCl₂, pH 7.5) at room temperature. Ten microliters of the sample and 50 µL of H1N1 NA (50 ng/mL) were added to a well in a plate. The mixture was then recorded at the excitation and emission wavelengths of 365 nm and 445 nm, respectively, with a POLAR OPTIMA. In the case of H3N2 and H5N1 NAs, 25 mM MES buffer (containing 500 mM NaCl, 5 mM CaCl₂, pH 6.5) and 50 mM MES buffer (containing 500 mM NaCl, 5 mM CaCl₂, pH 6.5) were used, respectively, and H5N1 required an activation period of 24 h at 37°C before the assay. The other methods were the same as those for H1N1 NA. The 50% inhibitory concentration (IC₅₀) for enzymatic activity of neuraminidase was determined from the dose-response curve using Excel software.

\[
\text{Inhibition} \% = \left[1 - \frac{S}{S_0} \right]
\]

Where C is the fluorescence of the control (enzyme and substrate) after 30 min of incubation, C₀ is the fluorescence of the control at zero time, and S₀ is the fluorescence of the tested samples at zero time.

Virus and cell culture

The influenza A virus was provided by ATCC (American Type Culture Collection) and propagated in MDCK cells at 37°C. MDCK cells were maintained in minimal essential medium (MEM) supplemented with 10% fetal bovine serum (FBS) and 0.01% antibiotic-antimycotic solution. Antibiotic-antimycotic solution, trypsin-EDTA, FBS, and MEM were purchased from Gibco BRL. Tissue culture plates were purchased from Falcon. SRB and zanamivir (purity of > 98%) were purchased from Sigma-Aldrich.

Table 2 Qualitative and quantitative analysis of compounds 1–7 found in the methanol extract of P. rhoeas bee pollen.

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>λₑ (min)</th>
<th>Dried pollen (mg/100 g)</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.8</td>
<td>294.9 ± 4.5</td>
<td>kaempferol-3-sophoroside (1)</td>
</tr>
<tr>
<td>2</td>
<td>18.6</td>
<td>154.8 ± 1.3</td>
<td>kaempferol-3-neohesperidoside (2)</td>
</tr>
<tr>
<td>3</td>
<td>20.1</td>
<td>24.5 ± 1.3</td>
<td>kaempferol-3-sambubioside (3)</td>
</tr>
<tr>
<td>4</td>
<td>24.8</td>
<td>ND (< 1)</td>
<td>kaempferol-3-glucoside (4)</td>
</tr>
<tr>
<td>5</td>
<td>12.9</td>
<td>63.2 ± 1.0</td>
<td>quercetin-3-sophoroside (5)</td>
</tr>
<tr>
<td>6</td>
<td>32.7</td>
<td>24.9 ± 0.9</td>
<td>luteolin (6)</td>
</tr>
<tr>
<td>7</td>
<td>10.4</td>
<td>30.1 ± 0.9</td>
<td>Chelianthifoline (7)</td>
</tr>
<tr>
<td>8</td>
<td>24.0</td>
<td>NT</td>
<td>Unknown</td>
</tr>
<tr>
<td>9</td>
<td>27.0</td>
<td>NT</td>
<td>Unknown</td>
</tr>
<tr>
<td>10</td>
<td>29.6</td>
<td>NT</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

a Values are means (n = 3); b standard deviation; c not detected; d not tested
Assays of antiviral activity and cytotoxicity

Antiviral activity and cytotoxicity were evaluated by the SRB method, which involves assessing the degree of reduction in the CPE [15]. Briefly, MDCK cells were seeded in 96-well culture plates at a concentration of 2 × 10^4 cells/well. The cells were then incubated for 18–24 h at 37 °C, after which the medium was removed and the cells were washed with PBS. After washing, 0.09 mL of diluted virus suspension and 0.01 mL of medium supplemented with trypsin-EDTA and compounds 1–7 or zanamivir, the positive control, were added in 10-fold dilutions ranging from 0.1 to 100 µM. Cells were incubated at 37 °C in 5% CO_2 for two days. After washing once with PBS, 100 µL of cold (−20 °C) 70% acetone were added to each well, and the cells were fixed for 30 min at −20 °C. The acetone was then removed, and the 96-well plates were dried in an oven for 30 min. After drying, 100 µL of 0.4% (w/v) SRB in 1% acetic acid solution were added to each well, followed by incubation for 30 min at room temperature. Unbound SRB was then removed, and the plates were washed five times with 1% acetic acid. Plates were then placed in a drying oven for 24 h. Bound SRB was solubilized with 100 µL of 10 mM unbuffered Tris-base solution, and the plates were incubated for 30 min. The resulting absorbance at 540 nm was obtained using a VERSAmax microplate reader, with the reference absorbance set to 620 nm. Zanamivir was used as a positive control in the CPE inhibition test.

The morphology was assessed using a light microscope at 20 × 10 magnification. Images were recorded with Leica Application Suite V2.7 software. The 50% inhibitory concentration (IC_{50}) and 50% cytotoxic concentration (CC_{50}) were calculated by regression analysis.

Supporting information

NMR assignments of compounds 1–7 are available as Supporting Information.

Acknowledgements

We thank emeritus professor Kwang-Ryul Choi (Chungnam National University) for support and identification of the bee pollen material. This work was supported by a grant from the Basic Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2012R1A1A3011559). This research was supported by “Research Base Construction Fund Support Program” funded by Chonbuk National University in 2015.

Conflict of Interest

The authors declare no conflict of interest.

References

Original Papers

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.