Probe-based confocal laser endomicroscopy (pCLE) images of submucosal growth of a duodenal mucous neck cell adenoma

A 77-year-old man presented with a 3-mm protruding lesion in the duodenal bulb (Fig. 1). The lesion was located on top of a submucosal elevation of approximately 1.5 cm in size with a small depression. The protruding lesion, but not the submucosal elevation, was pathologically diagnosed as an adenoma. Endoscopic mucosal resection (EMR) was initially performed to resect the protruding lesion. However, an endoscopic biopsy from the post-EMR scar detected an adenoma 2 months later. We performed pCLE, inserting the pCLE probe deeply into the small depression as well as the post EMR scar (Fig. 3). Immunohistochemical assessment showed positivity for MUC5AC, MUC6, pepsinogen-I, and pepsinogen-II (Fig. 4). Because these staining characteristics were consistent with those of mucous neck cells and primitive chief cells of the gastric fundic glands, a diagnosis of mucous neck cell adenoma of the duodenal bulb arising from ectopic gastric mucosa was made.

Mucous neck cell adenomas are rare neoplasms of the stomach and duodenum [3]. The initially resected protruding lesion can be considered to be an epithelial component of the submucosal adenomatous growth. Dark, small, or irregular-shaped crypts on the pCLE scanning reflected the histological features of a submucosal growth of adenomatous tissue, providing useful information when making a decision on therapeutic strategy.

Competing interests: None
Fig. 2 Comparison of probe-based confocal laser endomicroscopy (pCLE) and histology of the lesion 2 months after endoscopic mucosal resection. 

a, b Gastroduodenoscopy images with the sites for the pCLE images marked by arrowheads (1, surface of the submucosal elevation; 2, the small depression; 3, the post-endoscopic mucosal resection scar).

c–e Representative pCLE images with the probe at the sites marked by white arrowheads in parts a and b showing: c on surface scanning, regular-shaped villous structures; d, e on deep insertion of the probe, dark, small, and irregular-shaped crypts.

f–h The microscopic appearances relating to images c–e, respectively, showing: f non-neoplastic epithelium covering the lesion; g, h submucosal adenomatous growth.
Tomomitsu Tahara¹, Noriyuki Horiguchi¹, Mitsuo Nagasaka¹, Yoshihito Nakagawa¹, Tetsuya Tsukamoto², Tomoyuki Shibata¹, Naoki Ohmiya¹

1 Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
2 Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0041-111031
Endoscopy 2016; 48: E19–E21
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Tomomitsu Tahara, MD
1-98 Dengakugakubo Kutsukake-cho
Toyoake
Aichi, 470-1192
Japan
Fax: +81-562-938300
tomomiccyu@yahoo.co.jp

Fig. 3 Histologic views of the resected specimen showing submucosal growth of the adenoma at: a low power; b high power.

Fig. 4 Immunohistochemical analysis showing positivity of the tumor cells for MUC5AC, MUC6, pepsinogen-I, and pepsinogen-II.