Bipolar Radiofrequency Ablation of Benign Symptomatic Thyroid Nodules: Initial Experience

Bipolare Radiofrequenzablation von gutartigen, symptomatischen Schilddrüsenknoten: Erste Erfahrungen

Y. Korkusuz1, C. Erbelding1, K. Kohlhase1, W. Luboldt2, C. Happel1, F. Grünwald1

Zusammenfassung

Ziel: Bestimmung der Sicherheit und Wirksamkeit des Einsatzes von bipolaren Radiofrequenzablation (RFA) in gutartigen Schilddrüsenknoten.

Ergebnisse: Bipolare RFA wurde von allen Patienten gut toleriert. Sie zeigten eine mediane Schmerzintensität von 3 ± 1,5, wobei die Ausprägungen von 1 bis 7 reichten. Nebenwirkungen waren Hämatome bei 4 von 23 Patienten (17 %). Bipolare RFA führte zu einer signifikanten (p < 0,01) Abnahme der Echogenität, des Blutfusses und der Elastizität (Δ = 1 ± 0,28, 1 ± 0,46 und 1 ± 0,85 Punkte), zu einer medianen Steigerung der Tg-Konzentration von 403 ± 2568 ng/ml sowie zu einer Normalisierung der Szintigrafiebildgebung.

Schlussfolgerung: Bipolare RFA ist eine sichere und effektive Behandlung für gutartige symptomatische Schilddrüsenknoten.

Abstract

Purpose: To determine the safety and efficacy of bipolar radiofrequency ablation (RFA) in benign thyroid nodules.

Methods: 23 patients with 24 symptomatic benign thyroid nodules (21 regressive, 3 adenomas) ranging in volume from 0.5 to 112 ml (mean ± sd: 18 ± 24.4 ml) underwent bipolar RFA. Pain during the procedure was measured on a 10-point scale. Side-effects revealed by ultrasound or patients’ complaints were documented. Periablative efficacy was measured 24 hours after RFA as change (Δ) in serum thyroglobulin (Tg) and sonographic criteria (echogenicity, Doppler blood flow and elasticity) categorized on a 3-point scale (echogenicity, Doppler blood flow) or 4-point scale (elasticity). Efficacy in the 3 autonomous adenomas was measured as normalization of 99mTc-pertechnetate scintigraphy.

Results: Bipolar RFA was well tolerated by all patients with a median pain score of 3 ± 1.5 (range: 1 – 7). Side-effects were hematomas in 4 of 23 patients (17 %). Bipolar RFA resulted in a significant (p < 0.01) decrease in echogenicity, blood flow, elasticity (Δ = 1 ± 0.28, 1 ± 0.46 and 1 ± 0.85 points, respectively), a median increase in Tg of 403 ± 2568 ng/ml as well as in a normalization of scintigraphy.

Conclusion: Bipolar RFA is a safe and effective treatment option for symptomatic benign thyroid nodules.

Key points:

- Bipolar RFA is a safe and effective treatment for benign thyroid nodules.
- Ultrasound imaging allows guidance during bipolar radiofrequency ablation.
- 99mTc-pertechnetate is able to detect the ablation area of autonomous adenomas.
Kernaussagen:
- Bipolare RFA ist eine sichere und effektive Behandlungsoption für gutartige Schilddrüsenknoten.
- Ultraschallbildgebung erlaubt die Kontrolle der Ablation während der RFA.
- ^{99m}Tc-pertechnetate Szintigrafie ermöglicht die Erfassung der Ablationszone in autonomen Adenomen.

Introduction

Bipolar radiofrequency ablation (RFA) is a new method to treat symptomatic thyroid nodules. The precursor method, monopolar RFA, has been already used for years in treating tumors in liver, osteoid osteomas [1] and thyroid nodules [2]. In monopolar ablation there is a need for a grounding pad in addition to the treating electrode, whereas bipolar RFA has its anode and cathode integrated into one single electrode. Consequently, in monopolar RFA systems the electric current runs through the entire body, whereas the zone of electric current is limited to the area around the active tip of the bipolar electrode. High-frequency alternating current is applied to the electrode, which forces the dipoles of the surrounding water molecules to change direction accordingly. Due to the frictional heat arising from this ionic agitation the surrounding tissue is heated to more than 60°C, causing instantaneous protein denaturation and irreversible cell death [3]. The resulting coagulative necrosis is then degraded by the patient’s own immunosystem including neutrophils, macrophages and T-lymphocytes as effector cells [4]. The purpose of the study was to determine the safety and efficacy of bipolar RFA in treating benign thyroid nodules.

Material and methods

Patients

23 patients (6 men, 17 women) with median age 49 years (range: 36 – 75 years) with a total of 24 nodules (3 autonomous adenomas, 21 regressive nodules) underwent bipolar RFA on an outpatient basis. Nodule volume ranged from 0.5 ml to 112.3 ml with a mean volume of 18 ± 24.4 ml. Inclusion criteria were symptoms requiring surgery (cosmetic problems; compressive symptoms such as for-}

Bipolar RFA

For bipolar RFA, a generator with a maximum output of 250 W at a frequency of 470 ± 10 kHz was used (POWER System, Olympus Hamburg, Germany) with an internally-cooled 15 gauge electrode with an active tip of 20 to 40 mm or un-cooled 18 gauge electrode with an active tip of 9 to 15 mm (CelonProSurge, Olympus Hamburg, Germany).

Prior to the procedure a short 0.9 % NaCl infusion with 2 mg Metamizole (Novaminsulfon-ratiopharm, Ulm, Germany) is administered. Then, the position of the nodule was marked on the skin. Under ultrasound-guidance local anesthesia (Mepivacain-hydrochloride 1 % (AstraZeneca, Wedel, Germany)) was injected to reduce the pain during the skin incision and insertion of the electrode. In case of a complex cystic nodule the anesthetic needle was simultaneously used to drain the fluid from the cystic nodule. This was done in order to both minimize the pre-procedural ablation volume and to exclude possible heat-sink effects resulting from cystic fluids.

After local anesthesia of the skin was achieved, a 2 mm incision was made to place the RFA electrode via a transisthmic approach into the nodule. This transisthmic approach enables optimal visualization of the electrode as well as a maximum safety margin to vulnerable structures like carotid arteries, jugular veins, vagus nerve and the recurrent laryngeal nerve which is situated in the so called “danger triangle” between trachea and thyroid [6]. If a transisthmic approach was not possible, a craniocaudal approach was chosen. Treatment was started using a footswitch and monitored by ultrasound. Ablation was achieved by a so-called multi-shot technique, beginning with ablation at the deepest point of the nodule and then repositioning the electrode thereby creating multiple overlapping ablation zones. This procedure was repeated until the whole nodule was hollowed out or the safety margin was reached. Before removing the electrode a control ultrasound was performed to ensure that the nodule was treated successfully.

Assessment of patient’s tolerance and safety

Pain during the procedure was measured on a 10-point scale ranging from no pain = 0 to the most imaginable pain = 10. Side-effects revealed by ultrasound as well as patient complaints were documented.

Assessment of efficacy

Periablative efficacy was measured 24 hours after RFA as the change (Δ) in serum thyreoglobulin (Tg) and ultrasound-measured criteria compared to the baseline values obtained before RFA. For that purpose echogenicity, Doppler blood flow and elasticity were categorized: echogenicity on a 3-point scale (hypo-echogenic = 1; iso-echogenic = 2; hyper-echogenic = 3), Doppler flow on a 3-point scale (no perfusion = 1; slight perfusion = 2; marked perfusion = 3) [7] and elasticity on a 4-point scale (soft = 1, more soft than solid = 2, more solid than soft = 3, solid = 4) [8]. Ultrasound data was generated by the SonixTOUCH system (Ultrasonix Medical Corporation, Richmond, BC, Canada). Patients with autonomous adenomas additionally got a ^{99m}Tc-pertechnetate scintigraphy 24 hours after thermal ablation to ensure complete elimination of the hot spot area defined as successful therapy [9].

Statistical analysis

Statistical analysis was performed using Prism 6 for Mac OS X Version 6.0f (GraphPad Software, La Jolla, California, USA). Wilcoxon matched-pairs signed rank tests were performed to com-
pare blood levels and the above mentioned sonographic scores before and after treatment. Statistical significance was indicated with p-values < 0.05.

Results

Patient’s tolerance and safety

Bipolar RFA was well tolerated by all patients with a median pain score of 3 ± 1.5 (range: 1 – 7). Patients complained of pain during local anesthesia and when power was activated. When the patient’s pain was too great the treatment was paused for a short time until the patient was comfortable again. After turning off power to the electrode, the pain stopped within seconds. The treatment never had to be abandoned. In 19 of 23 patients (83 %) spread of pain was observed to the following locations: tooth (n = 5), ears (n = 3), neck (n = 3), spine (n = 1), gonial angle (n = 9) and shoulder (n = 1). Additional heat was felt by 9 of 23 patients (39 %). Side effects included a hematoma in 4 of 23 patients (17 %) (Table 1). Side effects that did not occur included dysphagia, hoarseness, infections, burns at puncture site, nodule rupture or Horner’s syndrome and vagal reactions.

Efficacy

Bipolar RFA resulted in a significant (p < 0.01) decrease in echogenicity (Δ = 1 ± 0.28 points) (Fig. 1), blood flow (Δ = 1 ± 0.46 points) (Fig. 2) and elasticity (Δ = 1 ± 0.85 points) with a significant (p < 0.01) increase in Tg (median ΔTg = 403 ± 2568 ng/ml) (Fig. 3). The 3 cases with autonomous adenomas showed a normalization of scintigraphy (Fig. 4).

Discussion

Our feasibility study shows that bipolar RFA provides a safe and effective treatment option for benign thyroid nodules as an alternative to radioiodine-therapy and surgery. The switch from mono- to bipolar RFA avoids burns at the grounding pad site [10] and the risk of RFA associated malfunction of implanted electrical devices such as pacemakers [11] should be reduced, since the electric current is limited to the area between the two poles of the bipolar electrode and does not stream omnidirectionally between the skin and a monopolar electrode. The fact that the electric current is limited to the area surrounding the bipolar electrode leads to a more predictable ablation zone in terms of size and geometric shape, a higher energy density and a shorter duration of ablation time [12]. Since no shaving is needed to place a grounding pad, the treatment is less discom-

Table 1 Side effects rate in n = 23 patients.

<table>
<thead>
<tr>
<th>side effects</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pain during ablation</td>
<td>23 (100 %)</td>
</tr>
<tr>
<td>hematoma</td>
<td>4 (17 %)</td>
</tr>
<tr>
<td>hoarseness</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>burns</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>infection</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>nodule rupture</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>dysphagia</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>horner’s syndrome</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>vagal reaction</td>
<td>0 (0 %)</td>
</tr>
</tbody>
</table>

Fig. 1 Decrease of echogenicity of a nodule (dotted line = diameter) after bipolar radiofrequency ablation (RFA) as proof of efficacy. (Isoechogenic before a and hypoechogenic after therapy b; note that the hyperechogenic spots represent so-called microbubbles. White arrows are displaying the border of the ablation zone.

Abb. 1 Abnahme der Echogenität eines Knotens (gepunktete Linie = Durchmesser) nach der Radiofrequenzablation als Beweis der Effektivität. (Isoechogen vor a und hypoechogen nach b der Therapie); beachten Sie, dass die hyperechogenen Flecken sogenannte Mikrobubbles sind. Die weißen Pfeile markieren die Grenzen der Ablationszone.

Fig. 2 Decrease of Doppler blood flow after bipolar radiofrequency ablation (RFA) as proof of efficacy. (Ratings: marked intra-/perinodal perfusion before a and slight intra-/perinodal perfusion after therapy b).

Abb. 2 Abnahme des Doppler-Blutflusses nach bipolarer Radiofrequenzablation als Beweis der Effektivität. (ausgeprägte intra-/perinodale Perfusion vor a und leichte intra-/perinodale Perfusion nach b der Therapie).
alternative treatment options for benign thyroid nodules include radiofrequency ablation (RFA), which limits radioiodine therapy for volume-reduction and consequently generally requires surgery for that purpose. This feasibility study therefore focused on the treatment of benign thyroid nodules, where RFA can offer an alternative to surgery. Alternative treatment options for benign thyroid nodules include percutaneous ethanol injections (PEI), high-intensity focused ultrasound (HIFU), and as well as laser, microwave or radiofrequency ablation. The percutaneous ethanol injection shows excellent results in cystic nodule volume reduction but poor results in solid nodules. High intensity focused ultrasound is the only non-invasive technique however it works only in small nodules.

Benign nodules do not take up enough iodine for radioiodine therapy, so surgery is recommended. This explains the high rate of 59,000 thyroid nodule-related operations per year in Germany. However, surgery has the disadvantages of general anesthesia, scar formation, the risk of hypoparathyroidism as well as the risk of recurrent laryngeal nerve palsy. Thus, RFA may become an alternative to surgery and it can be performed on an out-patient basis thus reducing costs.

Finally, bipolar RFA is relatively straightforward to perform. The placement of the electrode and RFA can be guided by ultrasound. RFA is associated with a decrease in echogenicity which can be used to monitor the procedure. The formation of hyperechogenic dots, so called microbubbles can be used to assess the spread of heat during the procedure. The risk of thermal damage to the recurrent laryngeal nerve is treated successfully. In addition to B-mode and Doppler flow imaging, elastography also showed a significant change and thus could be also used to monitor the procedure particularly where it indicates the margin of the nodule. However, further studies are necessary to optimize procedure monitoring and to calculate the necessary energy transfer to achieve ablation. Further investigation is also needed into the final reduction in nodule volume and its sustainability as well as the risk of inducing autoimmune thyroiditis which should be evaluated in a follow-up study. Analysis of volume reduction was not within the scope of the study as its effects take longer than the 24 hours we had allocated. The periablative efficacy is proven by the increase in Tg because Tg is liberated by cell destruction so that the increase in Tg reflects thyroid cell death. The promising results of this feasibility study regarding the periablative efficacy warrant further research.

Our study has several limitations as it is not a randomized trial which compares monopolar to bipolar RFA in benign thyroid nodules in general, or bipolar RFA to radioiodine therapy and surgery in hyperfunctioning thyroid nodules. Yet the promising results of this feasibility study regarding the periablative efficacy warrant further research.

Our study has several limitations as it is not a randomized trial which compares monopolar to bipolar RFA in benign thyroid nodules in general, or bipolar RFA to radioiodine therapy and surgery in hyperfunctioning thyroid nodules. Yet the promising results of this feasibility study regarding the periablative efficacy warrant further research.
Conclusion

Bipolar RFA has the potential to be a safe and effective treatment option for symptomatic benign thyroid nodules and thus deserves further refinements.

Clinical Relevance

- Bipolar RFA is an advancement of monopolar RFA and is an effective treatment option for benign thyroid nodules.
- Since bipolar RFA has no grounding pad it facilitates the preparation of the patient and eliminates the risk of skin burns.
- A median pain-score of 3 ± 1.5 on a 10-point scale shows that bipolar RFA is a gentle alternative to invasive thyroid surgery.

References