The Intrinsic Pathway does not Contribute to Activation of Coagulation in Mice Bearing Human Pancreatic Tumors Expressing Tissue Factor

Yohei Hisada1® Bernhard Moser2® Tomohiro Kawano1 Alexey S. Revenko3 Jeff R. Crosby3 Henri M. Spronk4 Nigel Mackman1

1 UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
2 Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
3 Ionis Pharmaceuticals, Inc., Antisense Drug Discovery, Carlsbad, California, United States
4 Department of Internal Medicine and Biochemistry, Laboratory for Clinical Thrombosis and Hemostasis, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands

Address for correspondence Nigel Mackman, PhD, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 8004 Mary Ellen Jones Bldg CB#7035, 116 Manning Drive, Chapel Hill, NC 27599, United States (e-mail: nigel_mackman@med.unc.edu).

The intrinsic pathway of coagulation has been shown to contribute to thrombosis.1 Factor (F) XII can be activated by a variety of agents, such as polyphosphate, and promotes coagulation by converting FXI to FXIa.1 Thrombin can also activate FXI through a positive feedback loop.1 FXII−/− and FXI−/− mice had reduced thrombosis compared with wild-type mice.2–4 Similarly, wild-type mice treated with antisense oligonucleotides (ASOs) against either FXII or FXI had reduced thrombosis compared with controls.5,6 Importantly, reducing FXI expression or inhibiting FXIa activity significantly reduced postoperative venous thromboembolism in patients who underwent total knee arthroplasty without increasing bleeding.7,8

There are very few studies on the role of the intrinsic pathway in cancer-associated thrombosis. We showed that extracellular vesicles (EVs) derived from the human prostate cancer cell line PC3 contained polyphosphate.9 EVs are small membrane vesicles released from a variety of cells, including cancer cells.10 PC3-derived EVs induced a high rate of death in wild-type mice in a pulmonary embolism model whereas FXII−/− or FXI−/− mice were protected.9 Similarly, the administration of the anti-FXIIa antibody prevented death of wild-type mice that received PC3-derived EVs.9 PC3-derived EVs also expressed tissue factor (TF) and inhibition of TF also protected wild-type mice from EV-induced death.9 One study found that patients with non-metastatic colorectal cancer have significantly lower plasma levels of FXII zymogen but not FXI compared with healthy controls, which suggests activation and consumption of FXII.11

Pancreatic cancer is associated with a high incidence of venous thromboembolism (5–26%).12,13 TF is expressed by pancreatic cancer cell lines and tumors.14–16 TF-positive EVs are released from cancer cells and circulate in the blood in both patients and mouse models.14,17,18 We and others showed that EV TF activity is associated with venous thromboembolism in patients with pancreatic cancer.19,20 Importantly, in mice bearing human pancreatic BxPC-3 tumors TF derived from the tumor enhanced venous thrombosis.21

In this study, we investigated the role of FXI in the activation of coagulation in a mouse model of pancreatic cancer. We used BxPC-3 cells modified to express the luciferase reporter.21 Tumors were grown orthotopically in Crl:NU-Foxn1nu male mice and imaged using the IVIS Lumina. Blood was collected from the inferior vena cava into citrate and platelet-poor plasma was prepared by centrifugation at 4,500 × g for 15 minutes. Mice were treated with either a

Importantly, the FXI ASO reduced F11 messenger ribonucleic acid (mRNA) expression in the liver by 98%, and significantly increased the activated partial thromboplastin time (aPTT).

Administration of the FXI ASO twice weekly for 3 weeks and then collecting samples 3 days later led to an approximately twofold increase in aPTT, whereas a single administration of the FXI ASO and collecting samples 3 days later led to an approximately 1.3-fold increase in aPTT.}

Levels of F11 mRNA expression were measured as described. Enzyme-linked immunosorbent assays were used to measure plasma levels of human TF protein (Biomedica Diagnostics, Cat#845) and thrombin antithrombin (TAT) complexes (Siemens, Cat#OWMG15).

In a previous study, we showed that BxPC-3 expresses the highest level of TF among human pancreatic cancer cell lines. In addition, BxPC-3 tumor-bearing mice had significantly increased levels of human TF protein and TAT.
complexes compared with controls.²¹,²² Consistent with our previous studies, we observed increased plasma levels of human TF protein and TAT complexes in tumor-bearing mice compared with controls (►Fig. 1A, B), which indicated that tumor-bearing mice have an activated coagulation system. We hypothesized that the intrinsic pathway would contribute to the activation of coagulation in BxPC-3 tumor-bearing mice. Therefore, we examined the effect of suppressing F11 mRNA expression using ASOs. Similar to a previous study,²³ we observed a 92 and 97% decrease of F11 mRNA expression in control mice and tumor-bearing mice treated with the FXI ASO when compared with the level of F11 mRNA expression in control mice and tumor-bearing mice treated with control ASO, respectively (►Fig. 1C, D). Next, we examined if the reduction of F11 mRNA expression by treatment with the FXI ASO is associated with a reduction on functional FXI in plasma. Similar to a previous study,²³ we observed a significantly prolonged aPTT in control mice treated with FXI ASO compared with control mice treated with control ASO (Control ASO vs. FXI ASO [mean ± standard deviation] = 27.02 ± 1.40 seconds vs. 31.5 ± 2.63 seconds, p < 0.01, unpaired t-test). Finally, we measured levels of plasma TAT complexes as a marker of activation of coagulation in control mice and tumor-bearing mice treated with control ASO or FXI ASO. We found that the intrinsic pathway mediates idling of the coagulation cascade because levels of FIX deficiency were reduced in individuals with FVII deficiency but not in individuals with FXI deficiency.²³

The relative contribution of the extrinsic and intrinsic pathways to cancer-associated thrombosis may be different with various cancers. This may depend, in part, on the levels of TF and polyphosphate on the EVs. In pancreatic cancer, the high level of TF expression by EVs may drive the activation of coagulation independently of the intrinsic pathway. In contrast, in prostate cancer, in which there are lower levels of TF expression and higher levels of polyphosphate, the intrinsic pathway may amplify the coagulation cascade and contribute to venous thromboembolism.

Acknowledgment
The authors thank Drs. Silvio Antoniak and Steven P. Grover for helpful comments.

References
two tissue factor-dependent FXα generation assays. Thromb Res 2016;139:90–97
23 Bauer KA, Kass BL, ten Cate H, Hawiger JJ, Rosenberg RD. Factor IX is activated in vivo by the tissue factor mechanism. Blood 1990;76(04):731–736