Dental Implants Surface in vitro Decontamination Protocols

Vanessa Coelho Batalha1 Raquel Abreu Bueno1 Edemar Fronchetti Junior1 José Ricardo Mariano2 Gabriela Cristina Santin3 Karina Maria Salvatore Freitas4,6 Mariana Aparecida Lopes Ortiz5 Samira Salmeron1

1Department of Periodontics and Implant Dentistry, Ingá University Center–Uningá, Maringá, Brazil 2Department of Implant Dentistry, Unieuro University Center, Brasília, Brazil 3Department of Pediatric Dentistry, Ingá University Center–Uningá, Maringá, Brazil 4Department of Orthodontics, Ingá University Center–Uningá, Maringá, Brazil 5Department of Microbiology, Ingá University Center–Uningá, Maringá, Brazil

Address for correspondence Samira Salmeron, DDS, MSc, PhD, Department of Periodontics and Implant Dentistry, Ingá University Center–Uningá, Rod PR 317, 6114–Zip code, 87035-510, Maringá/PR/Brazil; (e-mail: salmeronsamira@gmail.com).

Abstract

Objective The number of patients rehabilitated with dental implants has contributed to increased incidence of peri-implant diseases. Due to complex and difficult treatment, peri-implantitis is a challenge and an efficient clinical protocol is not yet established. Aim of this study was to evaluate the efficacy of two protocols for in vitro decontamination of dental implants surface.

Material and Methods Twenty titanium implants (BioHE-Bioconect) were used. Implants were divided into five groups (n = 4). NC group (negative control): sterile implants; PC group (positive control): biofilm contaminated implants; S group: biofilm contaminated implants, brushed with sterile saline; SB group: biofilm contaminated implants, brushed with sterile saline and treated with air-powder abrasive system with sodium bicarbonate (1 minute); and antimicrobial photodynamic therapy (aPDT) group: biofilm contaminated implants, brushed with sterile saline and treated with antimicrobial photodynamic therapy (red laser + toluidine blue O). The implants were contaminated in vitro with subgingival biofilm and distributed in groups PC, S, SB, and aPDT. Each group received the respective decontamination treatment, except groups NC and PC. Then, all implants were placed in tubes containing culture medium for later sowing and counting of colony-forming units (CFUs).

Statistical Analysis One-way analysis of variance and Tukey tests were performed, at 5% significance level.

Results Significantly fewer CFUs were observed in the aPDT group (19.38 × 10⁵) when compared with groups SB (26.88 × 10⁵), S (47.75 × 10⁵), and PC (59.88 × 10⁵) (p < 0.01). Both the aPDT and SB groups were statistically different from the NC group (p < 0.01).

Conclusion Proposed protocols, using air-powder abrasive system with sodium bicarbonate and aPDT, showed to be efficacious in the decontamination of dental implants surface in vitro.

Keywords
► peri-implantitis ► sodium bicarbonate ► photodynamic therapy ► dental implants ► decontamination

DOI https://doi.org/10.1055/s-0040-1721550 ISSN 1305-7456. © 2020. European Journal of Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Osseointegrated dental implants are well established as a predictable treatment option, with high success and survival rates. However, failures can occur and, with increased number of implants installed, an increase in related complications is also expected.

Peri-implant diseases are among the main complications, with incidence and prevalence rates following the increase in dental implant installation. Recently, peri-implant diseases were classified into peri-implant mucositis and peri-implantitis and present the biofilm as the main etiologic agent. Peri-implantitis is considered a clinically complex and irreversible condition and is characterized by inflammation of the soft tissue around the implant with subsequent and progressive bone loss.

The management of peri-implantitis can vary according to disease severity and extent, and nonsurgical or surgical approaches are indicated depending on the clinical and radiographic findings. Nonsurgical therapy includes the use of mechanical methods that promotes biofilm removal by using curettes, ultrasonic scalers, air abrasive systems, and titanium brushes. Chemical methods like citric acid and lasers, besides antiseptics and antibiotics, are suggested to be used in association with mechanical methods. Although nonsurgical therapy is an option, studies have shown that surgical treatment is recommended for peri-implantitis to achieve more favorable outcomes.

One of the main difficulties in the peri-implantitis treatment is the implant surface decontamination, which seems to be a major concern in the process that aims at reosseointegration. Thus, several methods of implant surface decontamination have been proposed, both mechanical and chemical, in surgical access. However, to date, no protocol has been established as the gold standard for peri-implantitis treatment.

The literature shows that best decontamination results can be achieved when both chemical and mechanical methods are used. As a mechanical method, sandblasting with abrasive particles has been used to treat peri-implantitis with positive effects. The sandblasting systems use abrasive powder introduced into a stream of compressed air, and these powder particles gain kinetic energy from a flow of water and compressed air. So, powder is an important parameter in the sandblasting effectiveness. Among the available types, sodium bicarbonate proved to be very effective in removing bacteria from implant surfaces. Regarding peri-implantitis treatment, studies show positive results with air-powder abrasive system with sodium bicarbonate using different time protocols from 60 seconds to 2 minutes. Disadvantages as implant surface changes are also presented. Thus, concerns about the time and efficacy are still raised in the literature, as well as changes in implant surface topography.

In the last decades, lasers associated with photosensitizing agents, in antimicrobial photodynamic therapy (aPDT), have been used as a chemical method for dental implant surface decontamination with promising results. The aPDT is a minimally invasive, nontoxic, and safe method based on the use of a photosensitizer, usually a dye activated by light with a specific wavelength, which can kill bacteria by generating highly reactive oxygen species. The anti-infective treatment with aPDT uses a low-level laser after application of photosensitizing agents like toluidine blue and methylene blue or indocyanine green. The only three photosensitizers clinically approved for use in humans in combination with light. Recent studies have shown that aPDT seems to be effective in reducing bacterial load in peri-implantitis and is a potential alternative therapy. However, some studies showed no difference in the effects of aPDT when compared with conventional therapies in peri-implantitis clinical treatment. Thus, despite the promising results of aPDT, there is no consensus and a great diversity of protocols in related parameters, and an ideal protocol is not yet established.

The present study aims to contribute to the advancement of knowledge on peri-implantitis treatment, evaluating the efficacy of two protocols, mechanical and chemical, for in vitro decontamination of metallic implants surface.

Material and Methods

This study was approved by the Research Ethics Committee of the Inga University Center (number 3.072.210) regarding the biofilm collection. A sample size calculation was performed, and the result showed that 20 implants were necessary for this study. Therefore, 20 grade IV commercially available pure titanium implants were used, with a surface treated with double acid etching, cylindrical, external hexagon, measuring 5 mm in diameter and 18 mm in length (BioHE-Bioconect, Itapira, Brazil), sterilized from the factory. The dental implants were randomly assigned to the following groups (n = 4):

- NC group (negative control): sterile implants.
- PC group (positive control): biofilm contaminated implants.
- S group: biofilm contaminated implants, brushed with sterile saline.
- SB group: biofilm contaminated implants, brushed with sterile saline and treated with air-powder abrasive system with sodium bicarbonate (1 minute).
- aPDT group: biofilm contaminated implants, brushed with sterile saline and treated with aPDT.

The implants were contaminated with biofilm, except for the NC group. After signing the informed consent form, a subgingival biofilm sample was collected from a volunteer, diagnosed with severe periodontitis who underwent periodontal treatment at the Ingá University Center. The collection was performed using proper Gracey curettes (HuFriedy Mfg. Co.; Chicago, United States). The selection of the volunteer followed the inclusion criteria: adult subject (> 18 years), absence of systemic problems, and nonsmoker. Exclusion criteria were pregnancy, breastfeeding, and use of antibiotics in the last 6 months.

After collection, the biofilm was cultured in sterile brain heart infusion (BHI) broth (Kasvi, São José dos Pinhais, Brazil).
and gram morphotinturial analysis was performed. The implants were then distributed in groups PC, S, SB, and aPDT, and contaminated in test tubes containing 10 mL of BHI broth medium and subgingival biofilm, and maintained for 7 days, in a 37°C oven, for the formation of biofilm on the implant surfaces. After the in vitro contamination, the implants received the respective treatments, except for the PC implants that did not receive any decontamination treatment. Throughout the process, sterile forceps and gloves were used to avoid contamination of the implants with bacteria other than the biofilm.

Implants from the S, SB, and aPDT groups were brushed with a soft bristle toothbrush (Dentalclean; Londrina, Brazil) with 20 mL of sterile saline (Eurofarma; São Paulo, Brazil). Twenty brush strokes were performed, covering all implant surfaces (Fig. 1). After brushing, the SB group implants were treated with high-pressure air-powder abrasive system (Practical Jet–Kondentech; São Carlos, Brazil) with extra-fine granulation sodium bicarbonate (Profhylaxis–Formaden; São José dos Pinhais, Brazil), for 1 minute (Fig. 2) and rinsed with 10 mL of sterile saline. The aPDT group implants, after brushing, were placed in 12-well acrylic plates for 1 minute, immersed in 3 mL of toluidine blue O (Sigma-Aldrich; São Paulo, Brazil) at a concentration of 100 µg/mL diluted in distilled water (Fig. 3). Subsequently, implants were irradiated in scan mode with Whitening Lase II (DMC; São Carlos, Brazil) with 600 µm diameter fiber optics at a distance of 5 mm of the surface and divided into four faces (buccal, lingual, mesial, and distal), according to the adapted protocol (660 nm; 30 mW; 50 J/cm²; 47 seconds) (Fig. 4), and rinsed with 10 mL of sterile saline.

After decontamination treatments were performed, all implants were inserted in 10 mL of sterile BHI broth medium. After 24 hours incubated at 37°C, dilutions and sowing acrylic plates were done in duplicate. These plates were stored in a CO² anaerobic jar, guaranteeing a condition of microaerophilia, and kept for 48 hours incubated at 37°C, allowing colonies to grow. Then, the colony-forming units (CFUs) were counted, with the naked eye, by an experienced examiner. The inter-group comparison of CFUs was performed by one-way analysis of variance and Tukey tests, with a significance level of 5%.

Results

The aPDT group presented the lowest number of CFUs (19.38 × 10⁵ ± 1.493) when compared with the SB group (26.88 × 10⁵ ± 2.496), S group (47.75 × 10⁵ ± 4.735), and the PC group (59.88 × 10⁵ ± 1.436), with statistically significant differences (p < 0.01). The SB group had a significantly lower number of CFUs when compared with groups S and PC (p < 0.01) and all the...
The similarities found between the microbiota of periimplantitis and periodontal disease.