Synlett 2022; 33(01): 93-97
DOI: 10.1055/s-0040-1720927
letter

Indium(III)-Catalyzed Synthesis of Primary Carbamates and N-Substituted Ureas

Isha Jain
,
Payal Malik


Abstract

An indium triflate-catalyzed synthesis of primary carbamates from alcohols and urea as an ecofriendly carbonyl source has been developed. Various linear, branched, and cyclic alcohols were converted into the corresponding carbamates in good to excellent yields. This method also provided access to N-substituted ureas by carbamoylation of amines. All the products were obtained by simple filtration or crystallization, without the need for chromatographic purification. Mechanistic investigations suggest that the carbamoylation reaction proceeds through activation of urea by O-coordination with indium, followed by nucleophilic attack by the alcohol or amine on the carbonyl center of urea. The inexpensive and easily available starting materials and catalyst, the short reaction times, and the ease of product isolation highlight the inherent practicality of the developed method.

Supporting Information



Publication History

Received: 20 September 2021

Accepted: 09 October 2021

Article published online:
11 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Ray S, Chaturvedi D. Drugs Future 2004; 29: 343
    • 1b Shaw SJ. Mini-Rev. Med. Chem. 2008; 8: 276
    • 1c Chaturvedi D. Role of Organic Carbamates in Anticancer Drug Design, In Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds; Brahmachari, G., Ed.. Taylor and Francis; Boca Raton: 2013
    • 1d Ghosh AK, Brindisi M. J. Med. Chem. 2015; 58: 2895
  • 2 Fischer L, Didierjean C, Jolibois F, Semetey V, Lozano JM, Briand J.-P, Marraud M, Poteau R, Guichard G. Org. Biomol. Chem. 2008; 6: 2596
  • 3 Sewald N, Jakubke H.-D. Peptides: Chemistry and Biology . Wiley-VCH; Weinheim: 2002
  • 4 Kao W. US 5262423A, 1993
  • 5 Plimmer JR, Gammon DW, Ragsdale NA. Encyclopedia of Agrochemicals. Wiley. New York,: 2003 , DOI: 10.1002/047126363X.agr093.
  • 6 Unverferth M, Kreye O, Prohammer A, Meier MA. Macromol. Rapid Commun. 2013; 34: 1569
  • 7 Kreye O, Mutlu H, Meier MA. Green Chem. 2013; 15: 1431
  • 8 Elschner T, Heinze T. Macromol. Biosci. 2015; 15: 735
  • 9 Fan W, Queneau Y, Popowycz F. Green Chem. 2018; 20: 485
  • 10 Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KC. J. Am. Chem. Soc. 2003; 125: 12376
  • 11 Thavonekham B. Synthesis 1997; 1189
  • 12 Liu M, Liang L, Li X, Gao X, Sun J. Green Chem. 2016; 18: 2851
  • 13 Siu PW, Brown ZJ, Farha OK, Hupp JT, Scheidt KA. Chem. Commun. 2013; 49: 10920
    • 14a Twitchett HJ. Chem. Soc. Rev. 1974; 3: 209
    • 14b Cotarca L, Delogu P, Nardelli A, Šunjić V. Synthesis 1996; 553
    • 14c Duspara PA, Islam MS, Lough AJ, Batey RA. J. Org. Chem. 2012; 77: 10362
    • 14d Vaillard VA, González M, Perotti JP, Grau RJ, Vaillard SE. RSC Adv. 2014; 4: 13012
    • 15a Gogoi P, Konwar D. Tetrahedron Lett. 2007; 48: 531
    • 15b Hamon F, Prié G, Lecornué F, Papot S. Tetrahedron Lett. 2009; 50: 6800
    • 16a Nishikawa T, Urabe D, Tomita M, Tsujimoto T, Iwabuchi T, Isobe M. Org. Lett. 2006; 8: 3263
    • 16b Dubé P, Nathel NF. F, Vetelino M, Couturier M, Larrivée-Aboussafy C, Pichete S, Jorgensen ML, Hardink M. Org. Lett. 2009; 11: 5622
  • 17 Palmieri A, Ley SV, Hammond K, Polyzos A, Baxendale IR. Tetrahedron Lett. 2009; 50: 3287
  • 18 Tiwari L, Kumar V, Kumar B, Mahajan D. RSC Adv. 2018; 8: 21585
  • 19 Jimenez-Gonzalez C, Ponder CS, Broxterman QB, Manley JB. Org. Process Res. Dev. 2011; 15: 912
  • 20 Ranu, B. C.; Chattopadhyay, K. In Eco-Friendly Synthesis of Fine Chemicals; Ballini, R.; Ed.; Cambridge Royal Society of Chemistry, 2009, DOI: DOI: 10.1039/9781847559760-00186.
  • 21 Abla M, Choi J.-C, Sakakura T. Chem. Commun. 2001; 2238
    • 22a Ion A, Van Doorslaer C, Jacobs P, De Vos D. Green Chem. 2008; 10: 111
    • 22b Watile RA, Bhanage BM. RSC Adv. 2014; 4: 23022
    • 23a Abla M, Choi J.-C, Sakakura T. Green Chem. 2004; 6: 524
    • 23b Zhang M, Zhao X, Zheng S. Chem. Commun. 2014; 50: 4455
  • 24 Peña-López M, Neumann H, Beller M. ChemSusChem 2016; 9: 2233
  • 25 Peña-López M, Neumann H, Beller M. Eur. J. Org. Chem. 2016; 2016: 3721
  • 26 Inaloo ID, Majnooni S. New J. Chem. 2018; 42: 13249
  • 27 Inaloo ID, Majnooni S, Esmaeilpour M. Eur. J. Org. Chem. 2018; 2018: 3481
  • 28 Ma Y, Wang L, Yang X, Zhang R. Catalysts 2018; 8: 579
  • 29 Wang P, Ma Y, Liu S, Zhou F, Yang B, Deng Y. Green Chem. 2015; 17: 3964
  • 30 Basu P, Dey TK, Ghosh A, Biswas S, Khan A, Islam SM. New J. Chem. 2020; 44: 2630
  • 31 Haque N, Biswas S, Basu P, Haque Biswas I, Khatun R, Khan A, Islam SM. New J. Chem. 2020; 44: 15446
  • 32 Podlech J, Maier TC. Synthesis 2003; 633
  • 33 Yang Y.-S, Wang S.-W, Long Y. Curr. Org. Chem. 2016; 20: 2865
  • 34 Datta M. ChemistrySelect 2021; 6: 187
  • 35 Brandão P, Burke AJ, Pineiro M. Eur. J. Org. Chem. 2020; 2020: 5501
  • 36 Muthusamy S, Babu SA, Gunanathan C, Suresh E, Dastidar P, Jasra RV. Tetrahedron 2000; 56: 6307
  • 37 Muthusamy S, Babu SA, Gunanathan C. Tetrahedron Lett. 2000; 41: 8839
  • 38 Muthusamy S, Gunanathan C, Babu SA. Tetrahedron Lett. 2001; 42: 523
    • 39a Loh T.-P, Hu Q.-Y, Tan K.-T, Cheng H.-S. Org. Lett. 2001; 3: 2669
    • 39b Augé J, Lubin-Germain N, Uziel J. Synthesis 2007; 1739
    • 40a Li C.-J, Chan T.-H. Tetrahedron 1999; 55: 11149
    • 40b Rawat D, Ravi C, Joshi A, Suresh E, Jana K, Ganguly B, Adimurthy S. Org. Lett. 2019; 21: 2043
    • 41a Miyai T, Onishi Y, Baba A. Tetrahedron 1999; 55: 1017
    • 41b Selvi T, Velmathi S. J. Org. Chem. 2018; 83: 4087
  • 42 Ali T, Chauhan KK, Frost CG. Tetrahedron Lett. 1999; 40: 5621
  • 43 Carbamates and N-Substituted Ureas 3a–t; General ProcedureIn(OTf)3 (5 mol%) was added to a stirred solution of urea (1 mmol) and the appropriate alcohol or amine (3 mmol) in 1,4-dioxane in a sealed tube, and the mixture was stirred at 150 °C until the reaction was complete (TLC). In the case of alcohols, the mixture was extracted with CH2Cl2 (3 × 10 mL) and the organic layers were combined, dried (Na2SO4), filtered, and concentrated to give a product that was purified by crystallization from CH2Cl2. In(OTf)3 was recovered by evaporating the aqueous layer to dryness and subsequent co-distillation with toluene; the resulting In(OTf)3 was then dried under reduced pressure for reuse in further carbamoylation reactions. In the case of amines, the desired products were precipitated with CH2Cl2 and separated by simple filtration.Hexyl Carbamate (3a)White solid; yield: 104 mg (80%); mp 62.4–63 °C. IR (KBr): 3416 (N–H), 1694 (C=O), 1339 (C–N) cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.99 (br s, 2 H), 4.06–4.02 (t, J = 6.7 Hz, 2 H), 1.64–1.57 (m, 2 H), 1.38–1.25 (m, 6 H), 0.90–0.87 (t, J = 5.2 Hz, 3 H). 13C NMR (100 MHz, DMSO): δ = 157.3, 65.3, 31.4, 28.8, 25.4, 22.5, 13.9. EI-MS (70 eV): m/z = 146 [M]+, 102 [C3H6OCONH2]+, 74 [M – OCONH2]+.Octyl Carbamate (3b)White solid; yield: 97 mg (83%); mp 67.7–67.9 °C. IR (KBr): 3426 (N–H), 1699 (C=O), 1349 (C–N) cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.62 (br s, 2 H), 4.07–4.04 (t, J = 5.4 Hz, 2 H), 1.33–1.28 (m, 12 H), 0.90–0.86 (m, 3 H). 13C NMR (100 MHz, DMSO): δ = 157.2, 65.3, 31.7, 29.1–28.9, 25.8, 22.6, 14.0. EI-MS (70 eV): m/z = 87 [C2H4OCONH2]+, 60 [OCONH2]+.