H. QIN, W. CAI, S. WANG, T. GUO, G. LI, H. LU* (NANJING UNIVERSITY, P. R. OF CHINA)

N-Atom Deletion in Nitrogen Heterocycles

Angew. Chem. Int. Ed. 2021, 60, 20678-20683, DOI: 10.1002/anie.202107356.

Denitrogenative Ring Shrinkage of Heterocycles

- 1. DBU (2.0 equiv) $N_2SO_2N_3$ (5.0 equiv) CH_2Cl_2 , 25 °C, 2–3 h
- 2. t-BuOLi (1.0 equiv) 1,4-dioxane, 120 °C, 3 h

n

n = 3 to 20

>30 examples up to 89% yield

$$\begin{array}{c|c}
 & N_2SO_2N_3 \\
\hline
 & via \\
 & via \\
\hline
 & via \\
 & via \\
\hline
 & via \\
 & via \\
\hline
 & via \\
 &$$

Significance: Lu et al. report a versatile method for N-atom excision from N-heterocycles. Rings containing 3–20 members and various types of cyclic structures including carbocycles, O-heterocycles, and N-heterocycles were obtained in moderate to excellent yields.

Comment: The authors propose a mechanism involving an initial N-sulfonylazidonation followed by a Curtius-type rearrangement to generate a 1,1-diazene intermediate. A second rearrangement gives a biradical intermediate that undergoes an intramolecular radical coupling reaction to give the desired product.

SYNFACTS Contributors: Paul Knochel, Andreas Hess Synfacts 2021, 17(10), 1101 Published online: 17.09.2021 **DOI:** 10.1055/s-0040-1720873; **Reg-No.:** P10621SF

Metals in Synthesis

Key words

nitrogen atom deletion

N-heterocycles

C-C coupling

skeletal editing

