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Catalytic Asymmetric Nucleophilic Fluorin
ation Using BF3·Et2O as Fluorine Source and 
Activating Reagent
Highlighted article by W. Zhu, X. Zhen, J. Wu, Y. Cheng,  
J. An, X. Ma, J. Liu, Y. Qin, H. Zhu, J. Xue, X. Jiang
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Dear Readers,

Early stage researchers (ESRs) represent a crucially 
important segment of readers and authors in scientific 
publishing. At Thieme Chemistry, we very much value 
ESRs, as demonstrated through a number of targeted 
editorial initiatives, including the Thieme Chemistry 
Journals Awards which are presented every year to up-
and-coming researchers who are in the early stages of 
their independent career. In 2021, over 80 ESRs from  
all over the world were recognized with the award.  
A number of Thieme Chemistry Journals Awardees are 
then invited by SYNFORM for an interview – the Young 
 Career Focus (YCF) – which covers several aspects of 
their professional and scientific activity and future 
perspectives. The YCFs are very popular articles and 
provide a unique opportunity for these brilliant ESRs to 
make themselves better known in the global research 
arena. Looking back at the archive of YCF articles, one 
can find interviews with Thieme Chemistry Journals 
Awardees who are now very well established and highly 
successful academics, and we are extremely proud 
that these colleagues were featured in SYNFORM back 
then, when they were highly promising ESRs. To con-
tinue this tradition, in this November issue we have not 
just one, but two YCF interviews: the first with Adelina 
Voutchkova-Kostal (USA), which opens the issue, and 
the second with Alberto Martinez-Cuezva (Spain), 
which is the closing article. Sandwiched between the 
two YCFs, there are two Literature Coverage Nat.  

Commun. articles: the first featuring a  collaboration 
between the groups of M. Vendrell (UK) and  
L.  Ackermann (Germany) and their highly innovative
synthesis of novel fluorogenic probes, the second
 covering a novel nucleophilic fluorination method
 developed by X. Jiang (P. R. of China).

Enjoy your reading!
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INTERVIEW

SYNFORM  What is the focus of your current research 
activity?

Prof. A. Voutchkova-Kostal As a graduate student in the 
later 2000’s, I remember noticing that research in catalysis 
almost exclusively focused on selective bond construction. 
It was clear why: making molecules creates value, unlike 
break ing them down. I wondered what the value proposi
tion of bond cleavage might be, and indeed, within the next 
few years, that question was answered. Research in valoriza
tion of biomass through selective bond cleavage exploded. As 
numerous new catalytic routes for breaking bonds in ligno
cellulose were developed, chemists looked towards the next 
challenge in breaking bonds of synthetic polymers, like plas
tics. I have been interested in selective defunctionalization of 
chemicals for many years now, and especially in how it can be 
applied to creating circular economies and cleaner syntheses. 
Among the current research efforts in our group that exemp
lify these goals are the depolymerization of lignocellulose PET 
using ionic liquids designed to have low ecotoxicity, and the 
use of decarbonylation and dehydrogenation chemistry to 
defunctionalize and couple substrates. When designing new 
processes, we assess whether it can deliver a quantifiable de
crease in environmental impact over alternatives, and minim
ize the hazard of chemicals we are using and making.

SYNFORM  When did you get interested in synthesis?

Prof. A. Voutchkova-Kostal I got interested in synthes
is through cooking. I loved cooking and baking when I was 
young, and later got interested in formulations for making 
cosmetics. In high school and college I enjoyed learning about 
the chemistry of cooking and baking. I really enjoyed organic 
labs in college, probably because we had a really engaging in
structor who made them fun. I decided to try out synthesis 

Young Career Focus: Professor Adelina Voutchkova-Kostal  
(George Washington University, USA)

Background and Purpose. SYNFORM regularly meets young up-and-coming researchers who are  
performing  exceptionally well in the arena of organic chemistry and related fields of research, in order to  
introduce them to the readership. This Young Career Focus presents Professor Adelina Voutchkova-Kostal  
(George Washington University, USA).

Biographical Sketch

Adelina Voutchkova-Kostal re-
ceived her B.A. in Chemistry and 
Biochemistry from Middlebury 
College, USA (2004), and her M.Sc. 
and Ph.D. (2009) from Yale Univer-
sity (USA) under the guidance of 
Bob Crabtree. She continued her 
post-graduate work at the Yale 
Center for Green Chemistry and 
Green  Engineering (USA) with Paul 
Anastas and Julie Zimmerman, 
focused on the rational design of 
safer chemicals. She launched her 

independent career in the Chemistry Department at George 
Washington University (Washington, DC, USA) in 2012 and 
is currently an Associate Professor. Her research program is 
focused on the design of catalytic processes that can help 
facilitate circular economies. The catalytic systems being de-
veloped cross the boundaries of homogeneous and hetero-
geneous catalysis, and consider lifecycle and hazard factors. 
The group is also involved in development of tools for design-
ing safer commercial chemicals in collaboration with com-
putational chemistry and toxicology groups. She was a recipi-
ent of the Thieme Chemistry Journals Award in 2021.

Prof. A. Voutchkova-
Kostal
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in industry, and got an internship in a pharma company one 
summer. In those few months I realized that while I did love 
synthetic chemistry, I did not want to just follow prescribed 
procedures. In fact, I kept modifying the protocols I was given 
and trying new reactions, which probably frustrated my poor 
mentor! He recommended that I pursue graduate school to 
see if I had what it takes to do research. At Yale I got to take 
organometallic chemistry with John Hartwig, who was an in
credible instructor, and the course really opened my eyes to 
the potential creativity of catalysis in designing new and more 
efficient reactions. I do my best to pass on that spark to my 
students in organometallics now.

SYNFORM  What do you think about the modern role and 
prospects of organic synthesis?

Prof. A. Voutchkova-Kostal Nature creates an impres
sive spectrum of biological structures and functions from a 
small handful of elements, efficiently cycling every nutrient 
in  making and remaking living things. Traditionally, organic 
synthesis has been focused on bond construction to access 
some of nature’s structural diversity (e.g. natural product syn
thesis), but not much emphasis has been placed on design for 
breakdown, either biological or synthetic, and on design for 
minimal hazard. I think we are at the brink of a revolution
ary phase in organic synthesis: if we, as synthetic chemists, 
em brace the challenge of designing molecules and clean syn
thetic routes to allow for circularity and intentional minimi
zation of hazard, we will play a critical role in the transition to 
circular economies. This is a very exciting time to be an organ
ic chemist, and an opportunity to recruit a new generation of 
environmentally conscious chemists to help make this vision 
a reality!

SYNFORM  Could you tell us more about your group’s 
areas of research and your aims?

Prof. A. Voutchkova-Kostal Our group focuses on design of 
chemical processes that involve defunctionalization reactions, 
such as dehydrogenation, decarbonylation, decarboxylation, 
transfer hydrogenation and hydrolysis, among others.  These 
kinetically challenging reactions have been traditionally catal
yzed by organometallic catalysts consisting of precious me
tals, which are typically not feasible on a large scale. Our in
terest therefore lies in developing relatively cheap and robust 
heterogeneous catalysts for these transformations that can 
work under mild conditions. This requires understanding how 
to “tune” the reactivity of these materials, which has led us to 
explore the electronic effect of supports on immobilized nano 

species. Our most successful and versatile catalyst  system 
consists of group 10 metals immobilized on tunable layered 
double hydroxide clays (hydrotalcites). We have shown that 
these materials have a number of advantageous properties 
that we can exploit by incorporating a second transition me
tal with synergistic activity. For example, we find that Cu
doped hydrotalcite is an excellent support for iridiumbased 
singlesite catalysts for transfer hydrogenation from glycerol 
to CO2, making two valuable products: lactic acid and formic 
acid (we thank the NSF CAREER program for supporting this 
work). We have also shown that these catalysts have multiple 
catalytic sites that we can exploit for tandem transformations: 
a  feature we are now exploiting in the defunctionalization of 
lignocellulose.

SYNFORM  What is your most important scientific achieve
ment to date and why?

Prof. A. Voutchkova-Kostal On the catalysis front, we are 
excited about expanding our work on multifunctional catal
ysts. For example, we designed a Pdhydrotalcite catalyst that 
can facilitate decarbonylation, dehydrogenation and aldol 
condensation, which allows the conversion of alcohols into 
longchain olefins (Scheme 1; J. Am. Chem. Soc. 2020, 142, 
696–699; ChemRxiv 2021, preprint, DOI: 10.26434/chem-
rxiv.14292311.v1). This chemistry can also be performed with 

A177

Scheme 1 Multicomponent catalytic system based on Pd-
hydrotalcite heterogeneous catalyst, for the dehydrogenative 
and decarbonylative coupling of alcohols or aldehydes.
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aldehydes, in which case it is an atomeconomical analogue of 
a Wittig reaction. We have extended this chemistry recently 
to biomassrelated substrates, such as lignin, allowing us to 
carry out multiple tandem reactions with just one catalyst. 
On the chemical design front, I am most proud of collabora
tive work on the development of in silico predictive tools for 
a number of toxicological endpoints, such as skin sensitiza
tion and aquatic toxicity. It has been extremely rewarding to 
see these tools used by industry to assess hazard of chemicals 
used in manufacturing. My colleagues and I hope this work 
helps protect human health, and hopefully also saves the lives 
of a few critters used in animal testing!

A178
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In the past few years, environmentally sensitive fluorophores 
have been developed to image cell-specific events associated 
to – among others – infection, inflammation and cancer in 
vivo. However, the vast majority of these strategies rely on 
 elements of substrate pre-functionalization. As a consequence, 
there is increasing interest in developing new  approaches for 
late-stage fluorogenic labeling of biomolecules with the aim of 
assembling molecular probes enabling for real-time  imaging. 
In this context, the chemo- and positional-selective modifi
cation of biologically relevant compounds is particularly im
portant for the late-stage diversification of biomolecules en
dowed with new spectral and biological capabilities. 

The groups of Professor Lutz Ackermann from the Georg-
August-Universität Göttingen (Germany) and Professor Marc 
Vendrell from The University of Edinburgh (UK) engaged in 
a successful collaboration aimed at advancing the state-of-
the-art in the area of fluorogenic probes suitable for real-time 
in vivo imaging, which resulted in the publication of the title 
paper in Nature Communications. Professor Ackermann said: 
“During the last decade, C–H activation has surfaced as an in
creasingly viable tool for molecular syntheses, with enabling 
applications to total syntheses, material sciences, medicinal 
chemistry, and – very recently – chemical biology. In this 
regard, major efforts have been devoted to establishing C–H 

A179

Chemodivergent Manganese-Catalyzed C–H Activation: Modular 
Synthesis of Fluorogenic Probes

Nat. Commun. 2021, 12, 3389; DOI: 10.1038/s41467-021-23462-9

Scheme 1
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functionalization of peptides with precious transition metals, 
such as palladium, while Earth-abundant 3d transition-metal 
catalysis continues to be scarce. Apart from being relatively 
inexpensive, 3d transition metals are generally less toxic and, 
more importantly, offer complementary reaction manifolds. 
Manganese complexes typically demonstrate low toxicity, thus 
their utilization in C–H functionalization of biomole cules is 
highly desirable. Moreover,” continued Professor Ackermann,  
“manganese(I)-catalyzed C–H activation represents a mild, 
robust platform for transformative C–H activation mani-
folds. Thus, our strategy for a divergent assembly point for 
the preparation of fluorescent peptides with tunable  optical 
properties identified internal bromoalkynes and terminal 
 alkynes as viable substrates (Scheme 1A). We envisioned that 
we thereby could gain access to fluorescent imaging probes, in 
which the phenyl-BODIPY fluorescent core would be stitched 
to the indole moiety of a tryptophan amino acid via a linear 
alkynyl or a bent alkenyl spacer, while at the same time ex
tending the conjugate π-system to fine-tune the fluorogenic 
behavior.” The authors further wondered whether the nature 
of the linkage would not only alter the fluorescent properties 
of the peptide, but could also render fluorescent molecular 
rotors due to different rotation barriers. “Thus, within an 
insertion/β-elimination sequence, the desired BODIPY-labeled 
amino acids with a linear linkage were obtained,” added Pro
fessor Ackermann. “In sharp contrast, 1-AdCO2H as additive 
enabled a divergent pathway via an insertion/protodemetal
ation manifold when terminal BODIPY-alkynes were used, 
thus providing the bent spacer. The mildness of our approach 
was reflected by an outstanding functional group tolerance 
for the late-stage C–H labeling of complex peptides (Scheme 
1B).” 

Professor Vendrell explained that the fluidity of cell mem
branes is an essential microenvironmental parameter for the 
proper function of a plethora of biological processes. “Thus, 
the study of changes and dysregulations on the composition of 
the plasma membrane is key from a biomedical perspective, 
from the fundamental study of disease mechanisms, such as 
cancer or Alzheimer’s disease, to the translation of new thera
peutics,” said Professor Vendrell, who added: “Recent studies 
have established a direct correlation between the composition 
of the plasma membrane of T cells, which are key mediators 
of the adaptative immune system against infections and can
cer, and their cytotoxic activity. These discoveries immedi
ately caught our attention due to their potential use for the 
devel opment of new fluorogenic turn-on probes as reporters 
of CD8+ T cells. Here, we used a rational design of different 
BODIPY molecular rotors to discover highly sensitive fatty 
acid-conjugated viscosity probes, which emit bright fluores

cence when in contact with the membranes of T cells. This 
smart probe allowed us to image, in real-time, changes in the 
activation state of live human CD8+ T cells under physiological 
conditions.”

The new fluidity-sensitive probe was used to establish a 
rapid fluorescence-based platform for the identification of 
small molecule modulators of CD8+ T cells (Scheme 1C). “In
terestingly, among all drugs tested, cells treated with the Acyl-
CoA:cholesterol acyltransferase inhibitor avasimibe  exhibited 
the highest fluorescence emission,” explained Professor 
 Vendrell, adding: “Confocal microscopy experiments showed 
bright staining of the membranes in avasimibetreated cells 
when compared to untreated cells.” The team also confirmed 
the functional state of labeled CD8+ T cells by measuring the 
expression of receptor markers that are directly associated 
to immune activity. “This simple and cost-effective chemical 
platform to study immune responses could help in accelera
ting the design of more efficient immunotherapy treatments 
that invigorate the activity of CD8+ T cells in different  diseases, 
including cancer,” said Professor Vendrell.

“This project clearly demonstrates the strength of the 
combination of chemical, biological and medical studies, 
which allow the direct observation of cell-specific events. 
 Furthermore, the successful collaboration between groups 
from different disciplines ensures that our discoveries not 
only have an immediate impact in the field on synthetic chem-
istry, but also in the area of biomedical sciences to tackle real-
life  problems,” Professor Ackermann concluded.
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1992 in Athens, Greece. He received 
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He obtained his master’s degree in 
organic chemistry from the same uni-
versity in 2016 following studies in 
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tochemistry under the supervi sion 
of Prof. Christoforos G. Kokotos. In 
the same year, he joined the group of 
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gen (Germany) as a PhD student, working on late-stage peptide 
diversification and remote functionalization.

Jongwoo Son obtained his B.S. and 
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organic chemistry at the University of 
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University of Edinburgh (UK) and the 
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Isaac Maksso was born in Frankfurt 
am Main (Germany). He received his 
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ly a member of the Prof. Lutz Ackermann group at the Georg-
August-Universität Göttingen (Germany) as a doctoral student.

Marc Vendrell graduated in chem-
istry at the University of Barcelona 
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Singapore Bioimaging Consortium to 
work in synthetic fluorophores for op-
tical imaging. In 2012 he started his 
independent career as an academic 
fellow at the University of Edinburgh 
(UK) to develop and translate fluor
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full professor at the Georg-August-Universität Göttingen (Ger-
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Chemistry as well as the director of the Wöhler Research In-
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tions in sustainable organic synthesis, late-stage peptide diver-
sification, and molecular imaging are among his main current 
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bay (India), Kyoto University (Japan), Università di Pavia (Italy) 
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Prof. M. Vendrell

Prof. L. Ackermann
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With the growing applications of fluorinated compounds in 
modern organic chemistry, pharmaceutical sciences, agro
chem istry and materials chemistry, the development of inno
vative strategies for achieving the selective fluorination of 
organic molecules represents one of the most hectic areas in 
chemical research.1,2 In particular, the construction of stereo
genic C–F bondsubstituted centers is a critically important, 
albeit still challenging, task in fluorine chemistry.3 Professor 
Xianxing Jiang from Sun Yatsen University (P. R. of  China), who 
is strongly interested in organofluorine chemistry, reckons 
that asymmetric fluorinations using nucleophilic fluor ine 
sources are much less developed as compared to electrophilic 
strategies, due to the unique features of fluorine atoms (such 
as high oxidation potential, high hydration energy).1 “In cur
rent research, the main nucleophilic fluorine sources applied 
in asymmetric fluorinations are PhCOF, pyridine ∙ HF, Et3N ∙ HF 
and metal fluorides,” he noted, adding: “Despite elegant works 
reported in the literature, several practical disadvantages dis
couraged further largescale utilization of these compounds 
for nucleophilic fluorinations: for  example, the high toxicity 
and biohazardous nature of HFbases, and the poor solubility 
of metal fluorides in organic solvents, coupled with  limited 
strategies to control their reactivity, are among the main 
 reasons.”4

According to Professor Jiang, compared to metal catalysts, 
chiral hypervalent iodine catalysts have recently attracted 
much attention in organic synthesis due to their excellent pro

perties, such as mild reaction conditions, ease of preparation, 
the ability to dispense with complex ligands, and being metal
free.5,6 “Importantly, Jacobsen and coworkers reported the 
viability of catalytic asymmetric nucleophilic fluorinations 
using a chiral iodine catalyst and pyridine ∙ HF in the presence 
of mCPBA,” he noted.7

 Professor Jiang and his research group have been inter
ested in hypervalent iodine catalyzed/promoted reactions 
(such as asymmetric halogenations, oxidative cyclization and 
oxyaminations) and Lewis acid catalyzed/mediated chemical 
synthesis. Professor Jiang explained: “The initial phase of our 
research was focused on catalytic asymmetric nucleophilic 
fluorinations using the ‘chiral iodine catalyst + pyridine ∙ HF’ 
catalytic system, inspired by Jacobsen’s work. We found that 
BF3 ∙ Et2O, which is a versatile and cheap Lewis acid, could 
also be applied as fluorine source in some fluorinations. We 
thought that if we could combine the hypervalent chiral 
 iodine catalyst and BF3 ∙ Et2O together, we could then apply the 
‘combination’ to reactions with appropriate substrates to form 
chiral fluorinated products. If so, it would be a welcome and 
significant step in fluorine chemistry.”

Professor Jiang continued: “Firstly, we applied the combin
ation of hypervalent iodine compound and BF3 ∙ Et2O to reac
tions with the amide 1a in DCM at 0 °C (Scheme 1). To our de
light, the fluorinated products 1b could be generated through 
the catalytic process. On the basis of this experimental result, 
we then used chiral iodine reagents instead of iodobenzene 
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(IB) to carry out the reaction. At first, the chiral iodine(III) re
agent 2a was applied to catalyze the fluorinations, affording 
the desired product with 37% ee (major diastereomer). Next, 
we examined spirobiindane chiral iodine catalysts 2b and 2c 
which gave the desired products with higher ee and dr  values. 
Axisymmetric chiral iodine catalysts were then  examined to 
improve the stereoselectivity of the fluorinated product. Catal
yst screening indicated that 2d was the best choice  (Scheme 
1). After several initial trials aimed at studying the effect of 
different experimental factors such as solvents, reaction tem
perature, concentration, we set out to optimize the model 
catalytic asymmetric aminofluorination of 1a in the presence 
of 15 mol% of ligand loading, using BF3 ∙ Et2O as the fluorine 
reagent in DCE at –25 °C. This part of the research project was 
carried out by Dr. Weiwei Zhu and Xiang Zhen.”

To gain a better understanding of this catalytic fluorina
tion system, the authors conducted control experiments and 
DFT calculations. Professor Jiang said: “It is worth noting that 
when PhIF2, Py ∙ HF or Et3N ∙ HF were used as fluorine  source, 
1b could NOT be obtained. In the beginning we thought 
 fluoride was produced from PhIOBF3 directly during the ca

talytic cycle. However, DFT calculations didn’t support this in
itial  hypothesis, as it was found to be energetically dis favored. 
Then we modified the possible mechanism: the ‘fluorine 
 source’ was hypothesized to be the BF4

– anion (generated in 
situ) and this turned out to be energetically possible (Scheme 
2). The process would thus follow a fluorination/1,2aryl mig
ration/cyclization cascade.8 In this scenario, BF3 ∙ Et2O plays the 
role of a fluorinating reagent, as well as the activating reagent 
for activation of iodosylbenzene.”

In order to expand the applications of this catalytic fluor
ination system, Professor Jiang and coworkers designed and 
synthesized substrates 3a–l to undergo the fluorination reac
tion (Scheme 3). “As expected, the fluorinated products 4a–l 
could be obtained as we hoped, based on the possible catal
ytic cycle. Screening of different reaction parameters gave the 
optimal reaction conditions for the formation of fluorinated 
products with good to excellent ee values,” remarked Profes
sor Jiang.

Professor Jiang recalls at the onset of this novel research 
program, three main challenges were identified. “The first was 
the choice of the fluorinating reagent. As mentioned above, 
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currently the most applied fluorine sources in nucleophilic 
fluorinations are Py ∙ HF, Et3N ∙ HF or metal fluorides, which 
have been used in elegant works, but the practical disadvan
tages described earlier are detrimental in terms of large scale 
 utilization. Considering that BF3 ∙ Et2O could be applied in 
 achiral fluorinations as nucleophilic fluorine source and in
spired by the asymmetric fluorinations achieved with chiral 
 iodine catalysts, we came up with the idea that the combina
tion of ‘chiral iodine catalyst and BF3 ∙ Et2O’ may be an alterna
tive for asymmetric fluorinations. The second was the design 
of the substrates. Based on the previous related work on fluor
ination reactions and the possible mechanism of hypervalent 
iodine catalyzed fluorination reactions, we  designed and syn
thesized the original substrate 1a. By the way, 1a was tested for 
halogenations in previous work.9–11 What inspired us to study 
the catalytic system further for catalytic asymmetric fluor
inations was that the substrate 1a could react with the ‘IB + 
BF3 ∙ Et2O’ system in the presence of mCPBA to generate fluor
inated products. The third challenge was the possible compe
tition between Lewis acid promoted cyclization reaction and 
catalytic fluorinations. In our previous work, we reported a 
Lewis acid promoted cyclization of unsaturated alkenes.”12

The current catalytic system had an important influence 
on the group’s research. In view of the advantages of using 
BF3 ∙ Et2O as fluorine source in asymmetric nucleophilic fluo
rinations, Professor Jiang revealed that his group will conti
nue to focus on catalytic, asymmetric nucleophilic fluorina
tions using BF3 ∙ Et2O as fluorine source and activating reagents 
in their future research. Professor Jiang explained: “We aim 
to expand the substrate scope and synthesize more chiral 
fluorin ated molecules using our “chiral hypervalent iodine + 
BF3 ∙ Et2O” catalytic system. In addition, asymmetric fluorina
tions using other nucleophilic fluorine sources are still one of 
our main research topics.”

Professor Jiang concluded: “Fluorinated oxazine  derivatives 
could be obtained with high stereoselectivities (up to > 20% ee 
and > 20:1 dr), whereas benzocycloheptane derivatives could 
be synthesized with high enantioselectivities (up to 85% ee) 
and in one step, through this metalfree and complexligand
free catalytic system. Oxazine derivatives are widely present 
in bioactive and pharmaceutical molecules, and fluorinated 
1,2amino alcohols, which are important intermediates in or
ganic synthesis and pharmaceutical chemistry, could be ob
tained through hydrolysis of the products. Besides, ringopen  
ing polymerization of the N,Oheterocycles can be applied to 
prepare functional materials. We believe that this process pro
vides not only a direct access to fluoro–oxazine/benzoxaze
pine skeletons, but also a foundation for further development 
of new types of asymmetric nucleophilic fluorinations in 

 future applications. Studies on the applicability of this asym
metric fluorination methodology using other substrates are 
presently ongoing in our group.”
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INTERVIEW

SYNFORM  What is the focus of your current research 
activity?

Dr. A. Martinez-Cuezva The SOC-UMU lab is a multidisci-
plinary group interested in diverse topics such as the design 
and applications of mechanically interlocked molecules, the 
discovery of new reactions of ketenimines, and the study of 
these and other transformations through computational cal-
culations. I am mainly involved in the study of the reactivity 
of mechanized systems, including their use in organocatal-
ysis. The mechanical bond present in such structures plays 
an interesting role in the activity and selectivity of these 
 species when employed as catalysts or as starting materials 
for prepar ing value-added materials. Organic synthesis is fun-
damental in our research, which we combine with supramo-
lecular and host–guest chemistry or with materials science for 
the design, for instance, of novel framework materials [metal-
organic frameworks (MOFs), covalent organic frameworks 
(COFs)] by using rotaxane-based building ligands.

SYNFORM  When did you get interested in synthesis?

Dr. A. Martinez-Cuezva My interest in organic synthesis 
started during the fourth year of my chemistry degree at the 
University of Burgos (Spain) – I was fascinated by the  passion 
of one of my professors, who was eventually my Ph.D. super-
visor. My early steps in the laboratory involved the use of or-
ganolithium compounds as starting materials for obtaining 
complex molecules and heterocycles, but I turned rapidly into 
the field of organo- and metal-catalyzed transformations. Im-
portantly, during my Ph.D. studies, I also had the opportuni-
ty to spend three months in the laboratory of Professor Paul 
Wentworth Jr. at the Scripps Research Institute (USA) and, a 
year after, another period in the group of Professor Stephen 
L. Buchwald at the Massachusetts Institute of Technology 

Young Career Focus: Dr. Alberto Martinez-Cuezva  
(Universidad de Murcia, Spain)

Background and Purpose. SYNFORM regularly meets young up-and-coming researchers who are  
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(USA) as a visiting student. These two external stages contri-
buted to fix my scientific vocation firmly and paved my way 
to a research career in organic synthesis. During my postdoc-
toral stay with Professor Benjamin List, I started in the field 
of asymmetric organocatalysis, a very challenging, but at the 
same time, extremely pleasant area. Nowadays, I am merging 
all my previous knowledge in catalysis with the building of 
mechanically interlocked systems. The use of mechanized 
systems in catalysis is under-explored and thus, it is an inter-
esting arena of research at the interface between both fields.

SYNFORM  What do you think about the modern role and 
prospects of organic synthesis?

Dr. A. Martinez-Cuezva Although organic synthesis is one 
of the most explored fields of research, the discovery of new 
transformations or activation modes is still an extremely 
challenging task. The synergy of organic synthesis with other 
disciplines is essential in order to attain key milestones. Thus, 
the combination of supramolecular chemistry with classical 
organic synthesis opens the door to the assembly of highly 
complex structures with novel reactivities and properties, as 
for example, the building of artificial molecular machinery 
inspired by Nature.1 I find it fascinating how tiny molecules 
can be fueled (by light, chemically, etc.) and, as a response, 
a determined task is accomplished. The assembly and fine 
adjustment of the different components of the molecular 
 machines, allowing programmed internal dynamics, remains 
highly challenging. This field is still in its infancy and demands 
extensive research.

SYNFORM  Could you tell us more about your group’s 
areas of research and your aims?

Dr. A. Martinez-Cuezva As I commented above, our labor-
atory works in different research fields. I am mainly involved 

in the synthesis and applications of mechanically interlocked 
molecules, perhaps the most relevant and influential line. The 
key purpose of this research is the assembly of novel mechan-
ized systems with interesting properties resulting from the 
presence of the mechanical bond. For this purpose, we use 
mainly hydrogen-bonded rotaxanes (Leigh’s type rotaxanes), 
the preparation of which is at the interface of organic and 
supra molecular chemistry. We are also incorporating these 
 systems as ligands for the assembly of stimuli-responsive ma-
terials, like MOFs.2 I would like to highlight two recent projects 
that are currently under development in our labs, in which the 
mechanical bond makes the difference:

Synthesis of β-lactams from interlocked fumaramides  
 (Scheme 1): In 2016, we found that polyamide-based inter-
locked N-benzylfumaramides can be easily converted into 
β-lactams upon cyclization triggered by an inorganic base.3–5 
The mechanical bond activates the cyclization inside the 
 macrocycle void, simultaneously avoiding the formation of 
byproducts and fully controlling the diastereoselective course 
of these processes. In stark contrast, the cyclization of the free 
thread affords low yields of the expected products but as a 
mixture of isomers, along with huge amounts of undefined 
byproducts. By following this methodology, we were able to 
access a set of stereochemically well-defined lactams after 
removal of the macrocycle by a further dethreading reaction. 
We have also expanded this protocol for accessing enantioen-
riched systems.6 Nowadays, we are still focused on expanding 
this procedure to the use of other starting materials having 
differ ent functionalities inside the macrocyclic void, with the 
aim of obtaining other classes of valuable compounds, includ-
ing asymmetric versions of these processes.

Design of mechanically interlocked organocatalysts   (Scheme 2):  
The combination of my expertise in organocatalysis,  acquired 
during my Ph.D. and postdoctoral stages, along with my 
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 experience with mechanically interlocked molecules earned 
at the SOC-UMU lab of the University of Murcia, both allowed 
me to start this new research line. There is a common belief 
that the design and synthesis of novel catalysts able to over-
come the actual limitations for accessing complex molecules, 
highlighting their asymmetric synthesis, is still an important 
task. Thus, the discovery of innovative catalyst motifs with 
unreported structural backbones or activation modes is high-
ly desirable. The incorporation of the mechanical bond to a 
catal yst skeleton is an interesting strategy to modulate the 
reactivity and selectivity.7 Note that the control of the inter-
nal dynamics of these systems by the application of external 
stimuli could be a great advantage over the conventional ca-
talysts, as it allows the building of switchable catalysts. Until 
now we have explored the behavior of mechanized organo-
catalysts in enamine and iminium-type transformations,8 
by using threads bearing secondary amino groups as active 
 sites. We found that the Michael addition of ketones to trans-
β-nitrostyrene, catalyzed by either a prolinamide-containing 
 thread or its rotaxane, yielded both possible enantiomers 
of the adducts in an enantiodivergent fashion (Scheme 2a).9 
 Later on, by using a template described by us for the  assembly 
of hydrogen-bonded rotaxanes with diacylaminopyridine 
units, we accessed a set of prolinamide-based organocatal-
ysts able to form supramolecular complexes with thymine 
derivatives (Scheme 2b).10 The use of these rotaxanes or their 
supramolecular complexes as catalysts allowed us to achieve 
a chemodivergent protocol in which three starting materials 

react in an enantioselective manner for obtaining two alter-
native adducts. Currently, I am working on the incorporation 
of the mechanical bond into systems with other innovative 
activation modes.

SYNFORM  What is your most important scientific achieve
ment to date and why?

Dr. A. Martinez-Cuezva If I have to choose the most im-
portant scientific success to date and, at the same time, the 
most pleasant one, I would pick my contribution to mechan-
ically interlocked organocatalysts. In the design, synthesis and 
application of these systems, an important part of the know-
ledge that I previously acquired along my scientific career 
 comes into play. Thus, I would say this research is the icing 
on the cake. I believe that the incorporation of the mechanical 
bond into organocatalysts or ligands for metal-mediated pro-
cesses can surpass in some aspects the standard catalytic abil-
ity of small organic molecules. Importantly, another strategy 
that we are currently exploring is the building of supramo-
lecular mechanically interlocked catalysts, assembled by the 
establishment of host–guest interactions.
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