Synthesis 2021; 53(20): 3639-3652
DOI: 10.1055/s-0040-1720451
review

Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats

,
Work in the Tantillo group in this area has been supported over the years by the US National Science Foundation and the American Chemical Society Petroleum Research Fund.


Dedicated to the memory of Prof. Marilyn Olmstead, a world-class leader in crystallography and extraordinary teacher and mentor

Abstract

This review summarizes approaches and caveats in computational modeling of transition-metal-catalyzed sigmatropic rearrangements involving carbene transfer. We highlight contemporary examples of combined synthetic and theoretical investigations that showcase the synergy achievable by integrating experiment and theory.

1 Introduction

2 Mechanistic Models

3 Theoretical Approaches and Caveats

3.1 Recommended Computational Tools

3.2 Choice of Functional and Basis Set

3.3 Conformations and Ligand-Binding Modes

3.4 Solvation

4 Synergy of Experiment and Theory – Case Studies

4.1 Metal-Bound or Free Ylides?

4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes

4.3 No Metal, Just Light

4.4 How To ‘Cope’ with Nonstatistical Dynamic Effects

5 Outlook



Publication History

Received: 28 April 2021

Accepted after revision: 26 May 2021

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
  • 2 Hoffmann RW. Angew. Chem. Int. Ed. 1979; 18: 563
  • 3 West TH, Spoehrle SS. M, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
  • 4 Doyle MP. Chem. Rev. 1986; 86: 919
  • 5 Moss RA, Doyle MP. Contemporary Carbene Chemistry . In Wiley Series of Reactive Intermediates . Moss RA, Doyle MP. Wiley; Hoboken: 2014
  • 6 Rao S, Prabhu KR. Org. Lett. 2017; 19: 846
  • 7 He F, Jana S, Koenigs RM. J. Org. Chem. 2020; 85: 11882
  • 8 Simonneaux G, Galardon E, Paul-Roth C, Gulea M, Masson S. J. Organomet. Chem. 2001; 617–618: 360
  • 9 Zhou CY, Huang JS, Che CM. Synlett 2010; 2681
  • 10 Jiang J, Ma X, Ji C, Guo Z, Shi T, Liu S, Hu W. Chem. Eur. J. 2014; 20: 1505
  • 11 Viñas-Lóbez J, Levitre G, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. ACS Org. Inorg. Au 2021; in press; DOI: 10.1021/acsorginorgau.1c00006.
  • 12 Fukuda T, Katsuki T. Tetrahedron Lett. 1997; 38: 3435
  • 13 Fukuda T, Irie R, Katsuki T. Tetrahedron 1999; 55: 649
  • 14 Greenman KL, Carter DS, Van Vranken DL. Tetrahedron 2001; 57: 5219
  • 15 Soheili A, Tambar UK. J. Am. Chem. Soc. 2011; 133: 12956
  • 16 Kang Z, Zhang D, Hu W. Org. Lett. 2017; 19: 3783
  • 17 Davies PW, Albrecht SJ. C, Assanelli G. Org. Biomol. Chem. 2009; 7: 1276
  • 18 Lin X, Tang Y, Yang W, Tan F, Lin L, Liu X, Feng X. J. Am. Chem. Soc. 2018; 140: 3299
  • 19 Carter DS, Van Vranken DL. Org. Lett. 2000; 2: 1303
  • 20 Aviv I, Gross Z. Chem. Eur. J. 2008; 14: 3995
  • 21 Zhu SF, Zhou QL. Natl. Sci. Rev. 2014; 1: 580
  • 22 Tyagi V, Sreenilayam G, Bajaj P, Tinoco A, Fasan R. Angew. Chem. Int. Ed. 2016; 55: 13562
  • 23 Hock KJ, Mertens L, Hommelsheim R, Spitzner R, Koenigs RM. Chem. Commun. 2017; 53: 6577
  • 24 Batista VF, Pinto DC. G. A, Silva AM. S. ACS Catal. 2020; 10: 10096
  • 25 Carreras V, Tanbouza N, Ollevier T. Synthesis 2021; 53: 79
  • 26 Solé D, Amenta A, Campos C, Fernández I. Dalton Trans. 2021; 50: 2167
  • 27 Doyle MP, Tamblyn WH, Bagheri V. J. Org. Chem. 1981; 46: 5094
  • 28 Kirmse W, Kapps M. Chem. Ber. 1968; 101: 994
  • 29 Nakai T, Mikami K. Chem. Rev. 1986; 86: 885
  • 30 Mikami K, Nakai T. Synthesis 1991; 594
  • 31 Clark JS. Nitrogen, Oxygen, and Sulfur Ylide Chemistry. A Practical Approach in Chemistry. Oxford University Press; New York: 2002: 1-308
  • 32 Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
  • 33 Li Z, Boyarskikh V, Hansen JH, Autschbach J, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 15497
  • 34 Murphy GK, Stewart C, West FG. Tetrahedron 2013; 69: 2667
  • 35 Bao H, Tambar UK. [2,3]-Rearrangements of Ammonium Zwitterions. In Molecular Rearrangements in Organic Synthesis. Rojas CM. Wiley; New York: 2015: 459-496
  • 36 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 37 Hommelsheim R, Guo Y, Yang Z, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 1203
  • 38 Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
  • 39 Wu YD, Houk KN, Marshall JA. J. Org. Chem. 1990; 55: 1421
  • 40 Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
  • 41 Laconsay CJ, Tantillo DJ. ACS Catal. 2021; 11: 829
  • 42 Meek SJ, Pitman CL, Miller AJ. M. J. Chem. Educ. 2016; 93: 275
  • 43 Eisenstein O. Faraday Discuss. 2019; 220: 489
  • 44 Wheeler SE, Seguin TJ, Guan Y, Doney AC. Acc. Chem. Res. 2016; 49: 1061
  • 45 Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
  • 46 Carpenter BK. Angew. Chem. Int. Ed. 1998; 37: 3340
  • 47 Carpenter BK. Chem. Rev. 2013; 113: 7265
  • 48 Tantillo DJ. Dynamic Effects on Organic Reactions . Reedijk J. Elsevier; Waltham (MA, USA): 2018
  • 49 Hare SR, Tantillo DJ. Pure Appl. Chem. 2017; 89: 679
  • 50 Nieves-Quinones Y, Singleton DA. J. Am. Chem. Soc. 2016; 138: 15167
  • 51 Buskirk A, Baradaran H. J. Chem. Educ. 2009; 86: 551
  • 52 Lewis DE. J. Chem. Educ. 2009; 86: 554
  • 53 Brown TL. J. Chem. Educ. 2009; 86: 552
  • 54 Wade PA. J. Chem. Educ. 2009; 86: 558
  • 55 Yoon TP. J. Chem. Educ. 2009; 86: 556
  • 56 Popper K. The Logic of Scientific Discovery . Routledge; London: 2002
  • 57 Popper K. Conjectures and Refutations . Routledge; London: 2014
  • 58 Feynman RP, Leighton R. “Surely You’re Joking Mr. Feynman!” . W. W. Norton; New York: 1985
  • 59 Gribbin JR. The Fellowship: The Story of a Revolution . Allen Lane; London: 2005
  • 60 Scott SL. ACS Catal. 2019; 9: 4706
  • 61 Hoffmann R. Am. Sci. 2003; 91: 9
  • 62 Ahn S, Hong M, Sundararajan M, Ess DH, Baik M.-H. Chem. Rev. 2019; 119: 6509
  • 63 Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F. Chem. Rev. 2015; 115: 9532
  • 64 Goodwin W. Philos. Sci. 2013; 80: 1159
  • 65 Watson W. Org. Process Res. Dev. 2012; 16: 1877
  • 66 Eisenstein O, Ujaque G, Lledós A. Top. Organomet. Chem. 2020; 67: 1
  • 67 Hare SR, Hudson BM, Tantillo DJ. Modeling Organic Reactions – General Approaches, Caveats, and Concerns. In Applied Theoretical Organic Chemistry. Tantillo DJ. World Scientific; London: 2018: 1-29
  • 68 Plata RE, Singleton DA. J. Am. Chem. Soc. 2015; 137: 3811
  • 69 Pidko EA. ACS Catal. 2017; 7: 4230
  • 70 Ryu H, Park J, Kim HK, Park JY, Kim S.-T, Baik M.-H. Organometallics 2018; 37: 3228
  • 71 Morgante P, Peverati R. Int. J. Quantum Chem. 2020; 120: e26332
  • 72 Lan Y. Computational Methods in Organometallic Catalysis. Wiley-VCH; Weinheim: 2021
  • 73 Sperger T, Sanhueza IA, Schoenebeck F. Acc. Chem. Res. 2016; 49: 1311
  • 74 Mata RA, Suhm MA. Angew. Chem. Int. Ed. 2017; 56: 11011
  • 75 Burke K, Wagner LO. Int. J. Quantum Chem. 2013; 113: 96
  • 76 Cohen AJ, Mori-Sanchez P, Yang W. Science 2008; 321: 792
  • 77 Bachrach SM. WIREs Comput. Mol. Sci. 2014; 4: 482
  • 78 Peng Q, Duarte F, Paton RS. Chem. Soc. Rev. 2016; 45: 6093
  • 79 Lam YH, Grayson MN, Holland MC, Simon A, Houk KN. Acc. Chem. Res. 2016; 49: 750
  • 80 Tantillo DJ. Chem. Soc. Rev. 2018; 47: 7845
  • 81 Harvey JN, Himo F, Maseras F, Perrin L. ACS Catal. 2019; 9: 6803
  • 82 Funes-Ardoiz I, Schoenebeck F. Chem 2020; 6: 1904
  • 83 Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme SA. Phys. Chem. Chem. Phys. 2017; 19: 32184
  • 84 Goerigk L, Mehta NA. Aust. J. Chem. 2019; 72: 563
  • 85 Chai J.-D, Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
  • 86 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 87 Yu HS, He X, Li SL, Truhlar DG. Chem. Sci. 2016; 7: 5032
  • 88 Zhao Y, Truhlar DG. J. Phys. Chem. A 2005; 109: 5656
  • 89 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 90 Grimme S, Antony J, Ehrlich S, Krieg HA. J. Chem. Phys. 2010; 132: 154104
  • 91 Eschmann C, Song L, Schreiner PR. Angew. Chem. Int. Ed. 2020; 60: 4823
  • 92 Singha S, Buchsteiner M, Bistoni G, Goddard R, Furstner AA. J. Am. Chem. Soc. 2021; 143: 5666
  • 93 Xi Y, Su B, Qi X, Pedram S, Liu P, Hartwig JF. J. Am. Chem. Soc. 2020; 142: 18213
  • 94 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 95 Fuentealba P, Preuss H, Stoll H, Von Szentpály LA. Chem. Phys. Lett. 1982; 89: 418
  • 96 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 270
  • 97 Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS. J. Phys. Chem. A 2001; 105: 8111
  • 98 Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Chem. Rev. 2019; 119: 2453
  • 99 Riplinger C, Pinski P, Becker U, Valeev EF, Neese F. J. Chem. Phys. 2016; 144: 24109
  • 100 Boys SF, Bernardi F. Mol. Phys. 1970; 19: 553
  • 101 Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG. J. Chem. Theory Comput. 2011; 7: 3027
  • 102 Papajak E, Truhlar DG. J. Chem. Theory Comput. 2010; 6: 597
  • 103 Bootsma AN, Wheeler SE. ChemRxiv 2019; preprint DOI: 10.26434/chemrxiv.8864204.v5.
  • 104 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc; Wallingford (CT, USA): 2016
  • 105 Bally T, Borden WT. Calculations on Open-Shell Molecules: A Beginner’s Guide . In Reviews in Computational Chemistry, Vol. 13. Lipkowitz KB, Boyd DB. Wiley-VCH; Weinheim: 1999: 1-97
  • 106 Abe M. Chem. Rev. 2013; 113: 7011
  • 107 Schreiner PR, Navarro-Vazquez A, Prall M. Acc. Chem. Res. 2005; 38: 29
  • 108 Abe M, Ye J, Mishima M. Chem. Soc. Rev. 2012; 41: 3808
  • 109 Stuyver T, Chen B, Zeng T, Geerlings P, De Proft F, Hoffmann R. Chem. Rev. 2019; 119: 11291
  • 110 Sun Y, Tang H, Chen K, Hu L, Yao J, Shaik S, Chen H. J. Am. Chem. Soc. 2016; 138: 3715
  • 111 Lee W, Zhou J, Gutierrez O. J. Am. Chem. Soc. 2017; 139: 16126
  • 112 Khade RL, Zhang Y. J. Am. Chem. Soc. 2015; 137: 7560
  • 113 Sharon DA, Mallick D, Wang B, Shaik S. J. Am. Chem. Soc. 2016; 138: 9597
  • 114 Zhang Y. Chem. Eur. J. 2019; 25: 13231
  • 115 Damiano C, Sonzini P, Gallo E. Chem. Soc. Rev. 2020; 49: 4867
  • 116 Vitek AK, Zimmerman PM, Jugovic TM. E. ACS Catal. 2020; 10: 7136
  • 117 Pracht P, Bohle F, Grimme S. Phys. Chem. Chem. Phys. 2020; 22: 7169
  • 118 Shao H, Chakrabarty S, Qi X, Takacs JM, Liu P. J. Am. Chem. Soc. 2021; 143: 4801
  • 119 Davies HM. L, Parr BT. Rhodium Carbenes . In Contemporary Carbene Chemistry . Moss RA, Doyle MP. Wiley; New York: 2014: 363-403
  • 120 Adly FG. Catalysts 2017; 7: 347
  • 121 Hrdina R. Eur. J. Inorg. Chem. 2020; 501
  • 122 Azcarate I, Costentin C, Robert M, Savéant JM. J. Am. Chem. Soc. 2016; 138: 16639
  • 123 Martin DJ, Mercado BQ, Mayer JM. Inorg. Chem. 2021; 60: 5240
  • 124 Harada S, Kono M, Nozaki T, Menjo Y, Nemoto T, Hamada Y. J. Org. Chem. 2015; 80: 10317
  • 125 Sure R, el Mahdali M, Plajer A, Deglmann P. J. Comput. Aided Mol. Des. 2021; 35: 473
  • 126 Yang Z, Guo Y, Koenigs RM. Chem. Commun. 2019; 55: 8410
  • 127 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 128 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 129 Miertuš S, Scrocco E, Tomasi J. Chem. Phys. 1981; 55: 117
  • 130 Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ. Acc. Chem. Res. 2009; 42: 489
  • 131 Ho J, Klamt A, Coote ML. J. Phys. Chem. A 2010; 114: 13442
  • 132 Fu Y, Bernasconi L, Liu P. J. Am. Chem. Soc. 2021; 143: 1577
  • 133 Handgraaf JW, Meijer EJ. J. Am. Chem. Soc. 2007; 129: 3099
  • 134 Carpenter BK, Harvey JN, Orr-Ewing AJ. J. Am. Chem. Soc. 2016; 138: 4695
  • 135 Govindarajan N, Meijer EJ. Faraday Discuss. 2019; 220: 404
  • 136 Drago RS, Long JR, Cosmano R. Inorg. Chem. 1981; 20: 2920
  • 137 Warzecha E, Berto TC, Berry JF. Inorg. Chem. 2015; 54: 8817
  • 138 Sheffield W, Abshire A, Darko A. Eur. J. Org. Chem. 2019; 6347
  • 139 Cressy D, Zavala C, Abshire A, Sheffield W, Darko A. Dalton Trans. 2020; 49: 15779
  • 140 Rej S, Chatani N. Inorg. Chem. 2021; 60: 3534
  • 141 Li F, Pei C, Koenigs RM. Chem. Sci. 2021; 12: 6362
  • 142 Nair VN, Kojasoy V, Laconsay CJ, Kong W, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2021; 143: 9016
  • 143 Roytman VA, Singleton DA. J. Am. Chem. Soc. 2020; 142: 12865
  • 144 Nakamura E, Yoshikai N, Yamanaka M. J. Am. Chem. Soc. 2002; 124: 7181
  • 145 Hansen J, Autschbach J, Davies HM. L. J. Org. Chem. 2009; 74: 6555
  • 146 DeAngelis A, Panish R, Fox JM. Acc. Chem. Res. 2016; 49: 115
  • 147 Lamb KN, Squitieri RA, Chintala SR, Kwong AJ, Balmond EI, Soldi C, Dmitrenko O, Castiñeira Reis M, Chung R, Addison JB, Fettinger JC, Hein JE, Tantillo DJ, Fox JM, Shaw JT. Chem. Eur. J. 2017; 23: 11843
  • 148 Yang LL, Evans D, Xu B, Li WT, Li ML, Zhu SF, Houk KN, Zhou QL. J. Am. Chem. Soc. 2020; 142: 12394
  • 149 Jagannathan JR, Fettinger JC, Shaw JT, Franz AK. J. Am. Chem. Soc. 2020; 142: 11674
  • 150 Davies HM. L, Bruzinski PR, Lake DH, Kong N, Fall MJ. J. Am. Chem. Soc. 1996; 118: 6897
  • 151 Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
  • 152 Lebel H, Marcoux JF, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
  • 153 Archambeau A, Miege F, Meyer C, Cossy J. Acc. Chem. Res. 2015; 48: 1021
  • 154 Green AI, Tinworth CP, Warriner S, Nelson A, Fey N. Chem. Eur. J. 2021; 27: 2402
  • 155 Clark JS, Hansen KE. Chem. Eur. J. 2014; 20: 5454
  • 156 Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu WD, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
  • 157 Wang J, Li S. J. Org. Chem. 2020; 85: 12343
  • 158 Harrison JG, Gutierrez O, Jana N, Driver TG, Tantillo DJ. J. Am. Chem. Soc. 2016; 138: 487
  • 159 Nickerson LA, Bergstrom BD, Gao M, Shiue Y.-S, Laconsay CJ, Culberson MR, Knauss WA, Fettinger JC, Tantillo DJ, Shaw JT. Chem. Sci. 2020; 11: 494
  • 160 Jana S, Koenigs RM. Org. Lett. 2019; 21: 3653
  • 161 Liu Z, Jin X, Dang Y. ACS Catal. 2021; 11: 691
  • 162 Xu B, Tambar UK. Angew. Chem. Int. Ed. 2017; 56: 9868
  • 163 Schmid SC, Guzei IA, Schomaker JM. A. Angew. Chem. Int. Ed. 2017; 56: 12229
  • 164 Schmid SC, Guzei IA, Fernández I, Schomaker JM. ACS Catal. 2018; 8: 7907
  • 165 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
  • 166 Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
  • 167 Baidilov D. Synthesis 2020; 52: 21
  • 168 DeAngelis A, Dmitrenko O, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2009; 131: 7230
  • 169 Ghanem A, Gardiner MG, Williamson RM, Müller P. Chem. Eur. J. 2010; 16: 3291
  • 170 De Angelis A, Boruta DT, Lubin JB, Plampin JN, Yap GP. A, Fox JM. Chem. Commun. 2010; 46: 4541
  • 171 Jana S, Yang Z, Pei C, Xu X, Koenigs RM. Chem. Sci. 2019; 10: 10129
  • 172 Davies HM. L, Manning JR. Nature 2008; 451: 417
  • 173 Davies HM. L, Lian Y. Acc. Chem. Res. 2012; 45: 923
  • 174 Combs JR, Lai Y, Vranken DL. Org. Lett. 2021; 23: 2841
  • 175 Hansen JH, Gregg TM, Ovalles SR, Lian Y, Autschbach J, Davies HM. L. J. Am. Chem. Soc. 2011; 133: 5076
  • 176 Ess DH, Wheeler SE, Iafe RG, Xu L, Çelebi-Ölçüm N, Houk KN. Angew. Chem. Int. Ed. 2008; 47: 7592
  • 177 Caramella P, Quadrelli P, Toma L. J. Am. Chem. Soc. 2002; 124: 1130
  • 178 Hare SR, Tantillo DJ. Beilstein J. Org. Chem. 2016; 12: 377
  • 179 Hare SR, Tantillo DJ. Chem. Sci. 2017; 8: 1442
  • 180 Lee E, Jung KW, Kim YS. Tetrahedron Lett. 1990; 31: 1023
  • 181 Tantillo DJ. J. Phys. Org. Chem. 2021; 34: e4202
  • 182 Chuang HH, Tantillo DJ, Hsu CP, Hsu CP, Tantillo DJ. J. Chem. Theory Comput. 2020; 16: 4050
  • 183 Lee S, Goodman JM. J. Am. Chem. Soc. 2020; 142: 9210
  • 184 Lee S, Goodman JM. Org. Biomol. Chem. 2021; 19: 3940
  • 185 Hare S, Bratholm L, Glowacki D, Carpenter B. Chem. Sci. 2019; 10: 9954
  • 186 Grimme S, Schreiner PR. Angew. Chem. Int. Ed. 2018; 57: 4170
  • 187 Neese F, Atanasov M, Bistoni G, Maganas D, Ye S. J. Am. Chem. Soc. 2019; 141: 2814
  • 188 Durand DJ, Fey N. Chem. Rev. 2019; 119: 6561
  • 189 Durand DJ, Fey N. Acc. Chem. Res. 2021; 54: 837
  • 190 Gallegos LC, Luchini G, St John PC, Kim S, Paton RS. Acc. Chem. Res. 2021; 54: 827
  • 191 Janet JP, Duan C, Nandy A, Liu F, Kulik HJ. Acc. Chem. Res. 2021; 54: 532
  • 192 dos Passos Gomes G, Pollice R, Aspuru-Guzik A. Trends Chem. 2021; 3: 96
  • 193 Dequina HJ, Nicastri KA, Schomaker JM. Advances in Organometallic Chemistry 2021; 76: 1
  • 194 Durka J, Turkowska J, Gryko D. ACS Sustainable Chem. Eng. 2021; 9: 8895
  • 195 Lledós A. Eur. J. Inorg. Chem. 2021; 26: 2547