Synthesis 2021; 53(17): 2961-2975
DOI: 10.1055/s-0040-1720406
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions

Timothy P. Aldhous
a   School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
b   Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
,
Raymond W. M. Chung
b   Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
,
Andrew G. Dalling
a   School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
,
John F. Bower
b   Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
› Author Affiliations
We thank the European Research Council [Grant 639594 (CatHet) and Grant 863799 (ChiCC)], the University of Bristol, and the University of Liverpool for funding. We also thank the Bristol Chemical Synthesis Centre for Doctoral Training, funded by the EPSRC (EP/L015366/1), and AstraZeneca for a studentship (to T.P.A.).


Abstract

Strategies that enable the efficient assembly of complex building blocks from feedstock chemicals are of paramount importance to synthetic chemistry. Building upon the pioneering work of Murai and co-workers in 1993, C–H-activation-based enantioselective hydroarylations of alkenes offer a particularly promising framework for the step- and atom-economical installation of benzylic stereocenters. This short review presents recent intermolecular enantioselective Murai-type alkene hydroarylation methodologies and the mechanisms by which they proceed.

1 Introduction

2 Enantioselective Hydroarylation Reactions of Strained Bicyclic Alkenes

3 Enantioselective Hydroarylation Reactions of Electron-Rich Acyclic Alkenes

4 Enantioselective Hydroarylation Reactions of Electron-Poor Acyclic Alkenes

5 Enantioselective Hydroarylation Reactions of Minimally Polarized Acyclic Alkenes

6 Conclusion and Outlook



Publication History

Received: 15 March 2021

Accepted after revision: 15 April 2021

Article published online:
25 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Harrington PJ, Lodewijk E. Org. Process Res. Dev. 1997; 1: 72
  • 2 Zhang Q, Li J.-F, Tian G.-H, Zhang R.-X, Sun J, Suo J, Feng X, Fang D, Jiang X.-R, Shen J.-S. Tetrahedron: Asymmetry 2012; 23: 577
  • 3 Lee SH, Kim IS, Li QR, Dong GR, Jeong LS, Jung YH. J. Org. Chem. 2011; 76: 10011
  • 4 Taber GP, Pfisterer DM, Colberg JC. Org. Process Res. Dev. 2004; 8: 385
  • 5 Imao D, Glasspoole BW, Laberge VS, Crudden CM. J. Am. Chem. Soc. 2009; 131: 5024
  • 6 Li L, Zhao S, Joshi-Pangu A, Diane M, Biscoe MR. J. Am. Chem. Soc. 2014; 136: 14027
  • 7 Swift EC, Jarvo ER. Tetrahedron 2013; 69: 5799
  • 8 Leonori D, Aggarwal VK. Angew. Chem. Int. Ed. 2015; 54: 1082
  • 9 Zhao S, Gensch T, Murray B, Niemeyer ZL, Sigman MS, Biscoe MR. Science 2018; 362: 670
  • 10 Li L, Wang C.-Y, Huang R, Biscoe MR. Nat. Chem. 2013; 5: 607
  • 11 Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK. Nat. Chem. 2014; 6: 584
  • 12 Llaveria J, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10958
  • 13 Odachowski M, Bonet A, Essafi S, Conti-Ramsden P, Harvey JN, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2016; 138: 9521
  • 14 Aichhorn S, Bigler R, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9519
  • 15 Ganesh V, Noble A, Aggarwal VK. Org. Lett. 2018; 20: 6144
  • 16 Wilson CM, Ganesh V, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 16318
  • 17 Friis SD, Pirnot MT, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 8372
  • 18 Jia T, Cao P, Wang B, Lou Y, Yin X, Wang M, Liao J. J. Am. Chem. Soc. 2015; 137: 13760
  • 19 Cheng X, Lu H, Lu Z. Nat. Commun. 2019; 10: 3549
  • 20 Taylor BL. H, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
  • 21 Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J. Am. Chem. Soc. 2013; 135: 3307
  • 22 Zhou Q, Cobb KM, Tan T, Watson MP. J. Am. Chem. Soc. 2016; 138: 12057
  • 23 Li B, Li T, Aliyu MA, Li ZH, Tang W. Angew. Chem. Int. Ed. 2019; 58: 11355
  • 24 Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027
  • 25 Lucas EL, Jarvo ER. Nat. Rev. Chem. 2017; 1: 0065
  • 26 Kischel J, Jovel I, Mertins K, Zapf A, Beller M. Org. Lett. 2006; 8: 19
  • 27 Sun H.-B, Li B, Hua R, Yin Y. Eur. J. Org. Chem. 2006; 4231
  • 28 Lee SY, Villani-Gale A, Eichman CC. Org. Lett. 2016; 18: 5034
  • 29 Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
  • 30 Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
  • 31 Matsuzawa H, Miyake Y, Nishibayashi Y. Angew. Chem. Int. Ed. 2007; 46: 6488
  • 32 Vicennati P, Cozzi PG. Eur. J. Org. Chem. 2007; 2248
  • 33 Mühlthau F, Schuster O, Bach T. J. Am. Chem. Soc. 2005; 127: 9348
  • 34 Mühlthau F, Stadler D, Goeppert A, Olah GA, Prakash GK. S, Bach T. J. Am. Chem. Soc. 2006; 128: 9668
  • 35 Marcum JS, Roberts CC, Manan RS, Cervarich TN, Meek SJ. J. Am. Chem. Soc. 2017; 139: 15580
  • 36 Wang H, Bai Z, Jiao T, Deng Z, Tong H, He G, Peng Q, Chen G. J. Am. Chem. Soc. 2018; 140: 3542
  • 37 Podhajsky SM, Iwai Y, Cook-Sneathen A, Sigman MS. Tetrahedron 2011; 67: 4435
  • 38 Chen Y.-G, Shuai B, Xu X.-T, Li Y.-Q, Yang Q.-L, Qiu H, Zhang K, Fang P, Mei T.-S. J. Am. Chem. Soc. 2019; 141: 3395
  • 39 Mei T.-S, Patel HH, Sigman MS. Nature 2014; 508: 340
  • 40 Zhang C, Santiago CB, Crawford JM, Sigman MS. J. Am. Chem. Soc. 2015; 137: 15668
  • 41 Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7202
  • 42 Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
  • 43 Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
  • 44 Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
  • 45 Matsubara T, Koga N, Musaev DG, Morokuma K. Organometallics 2000; 19: 2318
  • 46 Sakaki S, Mizoe N, Sugimoto M. Organometallics 1998; 17: 2510
  • 47 Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S. Organometallics 2002; 21: 3788
  • 48 Zhang M, Hu L, Lang Y, Cao Y, Huang G. J. Org. Chem. 2018; 83: 2937
  • 49 Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull. Chem. Soc. Jpn. 1995; 68: 62
  • 50 Kakiuchi F, Kochi T, Mizushima E, Murai S. J. Am. Chem. Soc. 2010; 132: 17741
  • 51 Lewis LN, Smith JF. J. Am. Chem. Soc. 1986; 108: 2728
  • 52 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 336: 529
  • 53 Nakao Y, Kashihara N, Kanyiva KS, Hiyama T. Angew. Chem. Int. Ed. 2010; 49: 4451
  • 54 Uchimaru Y. Chem. Commun. 1999; 1133
  • 55 Gao K, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 400
  • 56 Peneau A, Guillou C, Chabaud L. Eur. J. Org. Chem. 2018; 5777
  • 57 Donets PA, Cramer N. Angew. Chem. Int. Ed. 2015; 54: 633
  • 58 Tsai AS, Wilson RM, Harada H, Bergman RG, Ellman JA. Chem. Commun. 2009; 3910
  • 59 Harada H, Thalji RK, Bergman RG, Ellman JA. J. Org. Chem. 2008; 73: 6772
  • 60 Watzke A, Wilson RM, O’Malley SJ, Bergman RG, Ellman JA. Synlett 2007; 2383
  • 61 Thalji RK, Ellman JA, Bergman RG. J. Am. Chem. Soc. 2004; 126: 7192
  • 62 Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
  • 63 Sakamoto K, Nishimura T. Org. Biomol. Chem. 2021; 19: 684
  • 64 Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
  • 65 Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
  • 66 Wang Y.-X, Qi S.-L, Luan Y.-X, Han X.-W, Wang S, Chen H, Ye M. J. Am. Chem. Soc. 2018; 140: 5360
  • 67 Shibata T, Ryu N, Takano H. Adv. Synth. Catal. 2015; 357: 1131
  • 68 Shinde VS, Mane MV, Cavallo L, Rueping M. Chem. Eur. J. 2020; 26: 8308
  • 69 Lu H.-H, Liu H, Wu W, Wang X.-F, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2009; 15: 2742
  • 70 Huang H, Peters R. Angew. Chem. Int. Ed. 2009; 48: 604
  • 71 Han X, Widenhoefer RA. Org. Lett. 2006; 8: 3801
  • 72 Liu C, Zhu X, Zhang P, Yang H, Zhu C, Fu H. iScience 2018; 10: 11
  • 73 Zhang Z.-M, Xu B, Qian Y, Wu L, Wu Y, Zhou L, Liu Y, Zhang J. Angew. Chem. Int. Ed. 2018; 57: 10373
  • 74 Jang YJ, Larin EM, Lautens M. Angew. Chem. Int. Ed. 2017; 56: 11927
  • 75 Zhang P, Tsuji N, Ouyang J, List B. J. Am. Chem. Soc. 2021; 143: 675
  • 76 Aufdenblatten R, Diezi S, Togni A. Monatsh. Chem. 2000; 131: 1345
  • 77 Tsuchikama K, Kasagawa M, Hashimoto Y.-K, Endo K, Shibata T. J. Organomet. Chem. 2008; 693: 3939
  • 78 Shirai T, Yamamoto Y. Angew. Chem. Int. Ed. 2015; 54: 9894
  • 79 Nagamoto M, Fukuda J.-I, Hatano M, Yorimitsu H, Nishimura T. Org. Lett. 2017; 19: 5952
  • 80 Sevov CS, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2116
  • 81 Ebe Y, Nishimura T. J. Am. Chem. Soc. 2015; 137: 5899
  • 82 Ebe Y, Onoda M, Nishimura T, Yorimitsu H. Angew. Chem. Int. Ed. 2017; 56: 5607
  • 83 Sakamoto K, Nishimura T. Adv. Synth. Catal. 2019; 361: 2124
  • 84 Hatano M, Ebe Y, Nishimura T, Yorimitsu H. J. Am. Chem. Soc. 2016; 138: 4010
  • 85 Yamauchi D, Nishimura T, Yorimitsu H. Chem. Commun. 2017; 53: 2760
  • 86 Romero-Arenas A, Hornillos V, Iglesias-Sigüenza J, Fernández R, López-Serrano J, Ros A, Lassaletta JM. J. Am. Chem. Soc. 2020; 142: 2628
  • 87 Shibata T, Michino M, Kurita H, Tahara Y.-K, Kanyiva KS. Chem. Eur. J. 2017; 23: 88
  • 88 Shibata T, Kurita H, Onoda S, Kanyiva KS. Asian J. Org. Chem. 2018; 7: 1411
  • 89 Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
  • 90 Potter TJ, Kamber DN, Mercado BQ, Ellman JA. ACS Catal. 2017; 7: 150
  • 91 Potter TJ, Ellman JA. Org. Lett. 2017; 19: 2985
  • 92 Filloux CM, Rovis T. J. Am. Chem. Soc. 2015; 137: 508
  • 93 Shibata T, Shizuno T. Angew. Chem. Int. Ed. 2014; 53: 5410
  • 94 Pan S, Ryu N, Shibata T. J. Am. Chem. Soc. 2012; 134: 17474
  • 95 Lee P.-S, Yoshikai N. Org. Lett. 2015; 17: 22
  • 96 Loup J, Zell D, Oliveira JC. A, Keil H, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 14197
  • 97 Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
  • 98 Grélaud S, Cooper P, Feron LJ, Bower JF. J. Am. Chem. Soc. 2018; 140: 9351