Rhodium-Catalyzed Stereoselective Synthesis of Enones and Enals from 2,3-Allenols and Organoboronic Acids

Significance: Zhang, Qiang, Ma, and co-workers report a rhodium–copper co-catalyzed synthesis of enones and enals from organoboronic acids and 2,3-allenols under mild reaction conditions. The transformation involves a highly selective 1,4-hydride transfer that, when employing deuterated allenols, allows for the stereoselective synthesis of deuterated enones/enals.

Comment: The broad functional group tolerance of the reaction allowed for the modular incorporation of pharmacologically relevant scaffolds. Detailed DFT studies were conducted and the findings indicate that the carborhodation step is rate-limiting.

Proposed mechanism:

$$
\text{[Cp*RhCl}_2\text{]}_2 (2.5 \text{ mol\%}) \quad \text{NaOAc (20 mol\%)} \quad \text{Cu(OAc)}_2\text{H}_2\text{O (5.0 mol\%)}
\text{THF, r.t, air balloon, 5–38 h}
$$

- 69% yield
- 70% yield
- 80% yield
- 60% yield
- 81% yield
- 67% yield

Selected examples:

- 69% yield
- 70% yield
- 80% yield
- 60% yield
- 81% yield
- 67% yield