Synthesis 2022; 54(18): 3941-3961
DOI: 10.1055/s-0040-1719930
short review

Recent Advances in Transition-Metal-Catalyzed Reactions of N-Tosylhydrazones

V. Vaishya
,
R. Singhal
,
T. Kriplani
,
M. Pilania


Abstract

N-Tosylhydrazones are highly versatile precursors for in situ carbene formation and are frequently used in metal-catalyzed cross-coupling reactions. Due to their many applications in organic synthesis, including C–C, C–O, C–N, and C–S bond formation, N-tosylhydrazones have recently received much interest. They can be simply synthesized by reacting an aldehyde or ketone with N-tosylhydrazine to produce a solid N-tosylhydrazone, which is a ‘green’ precursor of diazo compounds. Using a suitable metal catalyst, N-tosylhydrazones show versatile substrate scope for the synthesis of substituted diaminopyrroles, chromenopyrazoles, alkenylpyrazoles, benzofuran thioethers, tetrahydropyridazines, sulfur-containing heterocycles, and benzofurans with potent biological activities and even regioselective N-functionalization reactions. Metal-catalyzed reactions of N-tosylhydrazones for the construction of bioactive heterocycles are still highly in demand. Hence, this review focuses on the recent synthetic application of N-tosylhydrazones influenced by different transition metals with notable features like simple workup procedures, gram-scale synthesis, broad substrate scope, multicomponent processes, cyclization, and carbon–heteroatom bond formation.

1 Introduction

2 Applications of N-Tosylhydrazones

3 Conclusion



Publication History

Received: 15 April 2022

Accepted: 26 April 2022

Article published online:
30 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang H, Deng Y.-H, Shao Z. Synthesis 2018; 50: 2281
    • 2a Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 2b Liu Z, Wang L, Tan H, Zhou S, Fu T, Xia Y, Zhang Y, Wang J. Chem. Commun. 2014; 50: 5061
    • 2c Zheng Y, Zhang X, Yao R, Wen Y, Huang J, Xu X. J. Org. Chem. 2016; 81: 11072
    • 3a Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 3b Katritzky AR, Rachwal S. Chem. Rev. 2010; 110: 1564
    • 3c Li P, Zhao J, Wu C, Larock RC, Shi F. Org. Lett. 2011; 13: 3340
    • 3d Bzeih T, Lamaa D, Frison G, Hachem A, Jaber N, Bignon J, Retailleau P, Alami M, Hamze A. Org. Lett. 2017; 19: 6700
    • 3e Jha AK, Jain N. Chem. Commun. 2016; 52: 1831
  • 4 Ardkhean R, Caputo D, Morrow S, Shi H, Xiong Y, Anderson E. Chem. Soc. Rev. 2016; 45: 1557
    • 5a Radolko J, Ehlers P, Langer P. Adv. Synth. Catal. 2021; 363: 3616
    • 5b Reddy AR, Zhou CY, Guo Z, Wei J, Che CM. Angew. Chem. Int. Ed. 2014; 53: 14175
    • 5c Kapure JS, Reddy CN, Adiyala PR, Nayak R, Nayak VL, Nanubolu JB, Singarapu KK, Maurya RA. RSC Adv. 2014; 4: 38425
    • 6a Ganapathy D, Sekar G. Org. Lett. 2014; 16: 3856
    • 6b Ni M, Zhang J, Liang X, Jiang Y, Loh T.-P. Chem. Commun. 2017; 53: 12286
    • 6c Zhang B.-H, Lei L.-S, Liu S.-Z, Mou X.-Q, Liu W.-T, Wang S.-H, Wang J, Bao W, Zhang K. Chem. Commun. 2017; 53: 8545
    • 7a Salvanna N, Reddy G, Rao B, Das B. Synlett 2014; 25: 2033
    • 7b Hossain ML, Ye F, Liu Z, Xia Y, Shi Y, Zhou L, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 8689
    • 7c Li F, Gu XJ, Zeng CE, Li X, Liu B, Huang G.-L. Eur. J. Org. Chem. 2020; 2020: 2923
    • 7d Kotha S, Misra S, Halder S. Tetrahedron 2008; 64: 10775
    • 8a Manikandan V, Vanangamudi G, Arulkumaran R, Christuraj P, Thirunarayanan G. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2020; 59B: 399
    • 8b Barroso R, Valencia RA, Cabal M.-P, Valdes C. Org. Lett. 2014; 16: 2264
    • 8c Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
    • 8d Roche M, Hamze A, Brion J.-D, Alami M. Org. Lett. 2013; 15: 148
    • 9a Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 9b Li J, Hu Y, Zhang D, Liu Q, Dong Y, Liu H. Adv. Synth. Catal. 2017; 359: 710
    • 9c Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 10a Li JJ. Name Reactions, 4th ed. Springer; Heidelberg: 2009: 16-17
    • 10b Shapiro RH, Heath MJ. J. Am. Chem. Soc. 1967; 89: 5734
    • 11a Fulton JR, Aggarwal VK, de Vicente J. Eur. J. Org. Chem. 2005; 2005: 1479
    • 11b Wei S, Li S, Chen C, He Z, Du X, Wang L, Zhang C, Wang Q, Pu L. Adv. Synth. Catal. 2017; 359: 1825
    • 11c Cai Z.-J, Lu X.-M, Zi Y, Yang C, Shen L.-J, Li J, Wang S.-Y, Ji S.-J. Org. Lett. 2014; 16: 5108
  • 12 Balouiri M, Sadiki M, Ibnsouda SK. J. Pharm. Anal. 2016; 6: 71
  • 13 Kumar V, Gupta K, Sirbaiya AK, Rahman MA. Innovat Int. J. Med. Pharm. Sci. 2021; 6 (05) 7
  • 14 Zhou P.-X, Luo J.-Y, Zhao L.-B, Ye Y.-Y, Liang Y.-M. Chem. Commun. 2013; 49: 3254
  • 15 Dubail J, Kesteloot F, Deroanne C, Motte P, Lambert V, Rakic J.-M, Lapiere C, Nusgens B, Colige A. Cell. Mol. Life Sci. 2010; 67: 4213
  • 16 Adamec J, Waisser K, Kuneš J, Kaustová J. Arch. Pharm. Pharm. Med. Chem. 2005; 338: 385
  • 17 Chattopadhyay D, Chawla-Sarkar M, Chatterjee T, Dey RS, Bag P, Chakraborti S, Khan MT. H. New Biotechnol. 2009; 25: 347
    • 18a Tam DN. H, Tawfik GM, El-Qushayri AE, Mehyar GM, Istanbuly S, Karimzadeh S, Tu VL, Tiwari R, Van Dat T, Nguyen PT. V. Malar. J. 2020; 19: 1
    • 18b Gao F, Zhang X, Wang T, Xiao J. Eur. J. Med. Chem. 2019; 165: 59
  • 19 Xu Y, Qian SY. Biomed. J. 2014; 37: 112
  • 20 Asif M, Husain A. J. Appl. Chem. 2013; 2013: 1
  • 21 Flefel EM, Tantawy WA, Abdel-Mageid RE, Amr AE.-G. E, Nadeem R. Res. Chem. Intermed. 2014; 40: 1365
  • 22 Bhabak KP, Mugesh G. Chem. Eur. J. 2008; 14: 8640
  • 23 Wang Q, Li H, Li Y, Huang R. J. Agric. Food Chem. 2004; 52: 1918
  • 24 Joubert J, Van Dyk S, Green IR, Malan SF. Bioorg. Med. Chem. 2011; 19: 3935
    • 25a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 25b Liu Y, Zhang Z, Zhang S, Zhang Y, Wang J, Zhang Z. Chem. Asian J. 2018; 13: 3658
    • 25c Kong Y, Zhang W, Tang M, Wang H. Tetrahedron 2013; 69: 7487
    • 25d Aziz J, Brion JD, Hamze A, Alami M. Adv. Synth. Catal. 2013; 355: 2417
    • 26a Liu Z, Wang J. J. Org. Chem. 2013; 78: 10024
    • 26b Ohmiya H. ACS Catal. 2020; 10: 6862
    • 26c Gutman ES, Arredondo V, Van Vranken DL. Org. Lett. 2014; 16: 5498
  • 27 Ananthula S, Parajuli P, Behery FA, Alayoubi AY, El Sayed KA, Nazzal S, Sylvester PW. Anticancer Res. 2014; 34: 2715
  • 28 Ansari A, Ali A, Asif M. New J. Chem. 2017; 41: 16
  • 29 Butnariu RM, Mangalagiu II. Bioorg. Med. Chem. 2009; 17: 2823
  • 30 Oruç EE, Rollas S, Kandemirli F, Shvets N, Dimoglo AS. J. Med. Chem. 2004; 47: 6760
  • 31 Bhaskar V, Mohite P. J. Optoelectron. Biomed. Mater. 2010; 2: 249
    • 32a Govindasami T, Pandey A, Palanivelu N, Pandey A. Int. J. Org. Chem. 2011; 1: 71
    • 32b Cukurovali A, Yilmaz I, Gur S, Kazaz C. Eur. J. Med. Chem. 2006; 41: 201
    • 32c Takate SJ, Shinde AD, Karale BK, Akolkar H, Nawale L, Sarkar D, Mhaske PC. Bioorg. Med. Chem. Lett. 2019; 29: 1199
    • 32d Singhal R, Choudhary SP, Malik B, Pilania M. Chemistryselect 2022; e202200134
    • 33a Arulkumaran R, Vijayakumar S, Sundararajan R, Sakthinathan S, Kamalakkannan D, Suresh R, Ranganathan K, Vanangamudi G, Thirunarayanan G. Int. Lett. Chem., Phys. Astron. 2012; 4: 17
    • 33b Yadav AK, Yadav LD. S. RSC Adv. 2014; 4: 34764
    • 33c Inturi SB, Kalita B, Ahamed AJ. Org. Biomol. Chem. 2016; 14: 11061
    • 34a Zhou L, Shi Y, Xiao Q, Liu Y, Ye F, Zhang Y, Wang J. Org. Lett. 2011; 13: 968
    • 34b Savini L, Chiasserini L, Travagli V, Pellerano C, Novellino E, Cosentino S, Pisano MB. Eur. J. Med. Chem. 2004; 39: 113
    • 34c Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
  • 35 Ohkado R, Ishikawa T, Iida H. Green Chem. 2018; 20: 984
  • 36 Theerthagiri P, Lalitha A. J. Iran. Chem. Soc. 2013; 10: 717
    • 37a Suryakiran N, Prabhakar P, Venkateswarlu Y. Chem. Lett. 2007; 36: 1370
    • 37b Senadi GC, Hu W.-P, Lu T.-Y, Garkhedkar AM, Vandavasi JK, Wang J.-J. Org. Lett. 2015; 17: 1521
    • 37c Yamaguchi S, Swager TM. J. Am. Chem. Soc. 2001; 123: 12087
    • 37d Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Chem. Rev. 2016; 116: 14726
    • 38a Chao D, Liu T.-X, Ma N, Zhang P, Fu Z, Ma J, Liu Q, Zhang F, Zhang Z, Zhang G. Chem. Commun. 2016; 52: 982
    • 38b Mai S, Song Q. Angew. Chem. Int. Ed. 2017; 56: 7952
    • 38c García-Muñoz AH, Tomás-Gamasa M, Pérez-Aguilar MC, Cuevas-Yañez E, Valdés C. Eur. J. Org. Chem. 2012; 2012: 3925
    • 39a Hossain ML, Wang K, Ye F, Zhang Y, Wang J. Chin. J. Catal. 2017; 38: 115
    • 39b Aggarwal VK, Bae I, Lee H.-Y. Tetrahedron 2004; 60: 9725
  • 40 Kurma SH, Sridhar B, Bhimapaka CR. J. Org. Chem. 2021; 86: 2271
    • 41a Ma L, Jin F, Cheng X, Tao S, Jiang G, Li X, Yang J, Bao X, Wan X. Chem. Sci. 2021; 12: 9823
    • 41b Arunprasath D, Devi Bala B, Sekar G. Adv. Synth. Catal. 2019; 361: 1172
  • 42 Wu YB, Wu YZ, Wu J, Xu D, Jiang H, Chang WW, Ma CY. J. Org. Chem. 2021; 86: 6918
  • 43 Li X, Mai S, Li X, Xu J, Xu H, Song Q. Org. Lett. 2020; 22: 7874
  • 44 Azzi E, Ghigo G, Parisotto S, Pellegrino F, Priola E, Renzi P, Deagostino A. J. Org. Chem. 2021; 86: 3300
  • 45 Lamaa D, Hauguel C, Lin H.-P, Messe E, Gandon V, Alami M, Hamze A. J. Org. Chem. 2020; 85: 13664
  • 46 Zhou Z, Liu Y, Chen J, Yao E, Cheng J. Org. Lett. 2016; 18: 5268
  • 47 Cai Z, Yao Z, Jiang L. Org. Lett. 2021; 23: 311
  • 48 Liu J, Han P, Liao J.-X, Tu Y.-H, Zhou H, Sun J.-S. J. Org. Chem. 2019; 84: 9344
  • 49 Yu Y, Chakraborty P, Song J, Zhu L, Li C, Huang X. Nat. Commun. 2020; 11: 461
  • 50 Ishitobi K, Muto K, Yamaguchi J. ACS Catal. 2019; 9: 11685
  • 51 Yanagimoto A, Uwabe Y, Wu Q, Muto K, Yamaguchi J. ACS Catal. 2021; 11: 10429
  • 52 Wei Z, Zhang Q, Tang M, Zhang S, Zhang Q. Org. Lett. 2021; 23: 4436
  • 53 Wang C.-Y, Han J.-B, Wang L, Tang X.-Y. J. Org. Chem. 2019; 84: 14258
  • 54 Zhu L, Ren X, Yu Y, Ou P, Wang Z.-X, Huang X. Org. Lett. 2020; 22: 2087
  • 55 Katsina T, Papoulidou KE, Zografos AL. Org. Lett. 2019; 21: 8110
  • 56 Panish R, Thieu T, Balsells J. Org. Lett. 2021; 23: 5937
  • 57 Sun Z, He J, Li W, Li X, Feng Y, Liu Y, Liu P, Han S. ChemistrySelect 2020; 5: 7396
  • 58 He J, Feng Y, Yang F, Dai B, Liu P. Eur. J. Org. Chem. 2020; 2020: 5857
  • 59 Rahman SM. A, Söderberg BC. G. Tetrahedron 2021; 94: 132331
  • 60 Ping Y, Wang R, Wang Q, Chang T, Huo J, Lei M, Wang J. J. Am. Chem. Soc. 2021; 143: 9769
  • 61 Ostrovskii VS, Beletskaya IP, Titanyuk ID. Org. Lett. 2019; 21: 9080
  • 62 Zhang K, El Bouakher A, Levaique H, Bignon J, Retailleau P, Alami M, Hamze A. J. Org. Chem. 2019; 84: 13807
  • 63 Ragupathi A, Sagadevan A, Charpe VP, Lin C, Hwu JR, Hwang KC. Chem. Commun. 2019; 55: 5151
  • 64 Wang E.-H, Ping Y.-J, Li Z.-R, Qin H, Xu Z.-J, Che C.-M. Org. Lett. 2018; 20: 4641
  • 65 Deshmukh DS, Gangwar N, Bhanage BM. J. Indian Chem. Soc. 2021; 98: 100001
  • 66 Arunprasath D, Devi Bala B, Sekar G. J. Org. Chem. 2018; 83: 11298
  • 67 Wang Y, Wen X, Cui X, Zhang XP. J. Am. Chem. Soc. 2018; 140: 4792
  • 68 Karns AS, Goswami M, de Bruin B. Chem. Eur. J. 2018; 24: 5253
  • 69 Mao M, Zhang L, Chen Y.-Z, Zhu J, Wu L. ACS Catal. 2017; 7: 181
  • 70 Xia Y, Hu F, Xia Y, Liu Z, Ye F, Zhang Y, Wang J. Synthesis 2017; 49: 1073
  • 71 Wang Y, Wen X, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2017; 139: 1049
  • 72 Jadhav AP, Ray D, Rao VB, Singh RP. Eur. J. Org. Chem. 2016; 2016: 2369
  • 73 Paraja M, Barroso R, Cabal MP, Valdés C. Adv. Synth. Catal. 2017; 359: 1058
  • 74 Reddy AR, Hao F, Wu K, Zhou CY, Che CM. Angew. Chem. Int. Ed. 2016; 55: 1810
  • 75 Naret T, Retailleau P, Bignon J, Brion JD, Alami M, Hamze A. Adv. Synth. Catal. 2016; 358: 1833
  • 76 Luo K, Mao S, He K, Yu X, Pan J, Lin J, Shao Z, Jin Y. ACS Catal. 2020; 10: 3733