Synlett 2022; 33(13): 1295-1301
DOI: 10.1055/s-0040-1719926
letter

Bare Magnetite-Promoted Oxidative Hydroxylation of Arylboronic Acids and Subsequent Conversion into Phenolic Compounds

Hyun-A Cho
,
Yong-Ki Lee
,
Seung-Hoi Kim


Abstract

The simple combination of readily available, recoverable, and recyclable magnetite (Fe3O4) nanoparticles and an environmentally friendly oxidant (H2O2) induced the effective functional group transformation of arylboronic acids into their corresponding phenols under mild conditions. Moreover, subsequent treatment of the reaction intermediate with appropriate electrophiles was accomplished in a one-pot system, leading to the formation of halophenols and phenolic derivatives.

Supporting Information



Publication History

Received: 29 March 2022

Accepted after revision: 06 May 2022

Article published online:
03 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Zhu C, Wang R, Falck JR. Org. Lett. 2012; 14: 3494
    • 3a Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 623
    • 3b Maleczka RE. Jr, Shi F, Holmes D, Smith MR. III. J. Am. Chem. Soc. 2003; 125: 7792
    • 3c Travis BR, Ciaramitaro BP, Borhan B. Eur. J. Org. Chem. 2002; 3429
    • 3d Webb KS, Levy D. Tetrahedron Lett. 1995; 36: 5117
    • 3e Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
    • 4a Chatterjee N, Goswami A. Tetrahedron Lett. 2015; 56: 1524
    • 4b Pazenok S, Leroux FR. In Frontiers of Organofluorine Chemistry . Ojima I. World Scientific; London: 2020: 695
  • 5 Kianmehr E, Yahyaee M, Tabatabai K. Tetrahedron Lett. 2007; 48: 2713
    • 7a Dar BA, Bhatti P, Singh AP, Lazar A, Sharma PR, Sharma M, Singh B. Appl. Catal., A 2013; 466: 60
    • 7b Yang D, An B, Wei W, Jiang M, You J, Wang H. Tetrahedron 2014; 70: 3630
    • 7c Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
    • 7d Affrose A, Azath IA, Dhakshinamoorthy A, Pitchumani K. J. Mol. Catal. A: Chem. 2014; 395: 500
    • 7e Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y. Org. Lett. 2010; 12: 1964
    • 7f Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
    • 7g Zheng J, Lin S, Zhu X, Jiang B, Yang Z, Pan Z. Chem. Commun. 2012; 48: 6235
    • 7h Gogoi N, Gogoi PK, Borah G, Bora U. Tetrahedron Lett. 2016; 57: 4050
    • 7i Silveria DG, Monzon DM, Crisostomo FP, Martin T, Martin VS, Carrillo R. Chem. Commun. 2015; 51: 7027
  • 8 Wang ZJ, Li R, Landfester K, Zhang KA. I. Polymer 2017; 126: 291
    • 9a Zhong Y, Yuan L, Huang Z, Gu W, Shao Y, Han W. RSC Adv. 2014; 4: 33164
    • 9b Kotoučová H, Strnadová I, Kovandová M, Chudoba J, Dvořákovác H, Cibulka R. Org. Biomol. Chem. 2014; 12: 2137
    • 10a Laskar K, Paul S, Bora U. Tetrahedron Lett. 2019; 60: 151044
    • 10b Gualandi A, Savoini A, Saporetti R, Franchi P, Lucarini M, Cozzi PG. Org. Chem. Front. 2018; 5: 1573
    • 10c Silveira-Dorta G, Monzón DM, Crisóstomo FP, Martín T, Martín VS, Carrillo R. Chem. Commun. 2015; 51: 7027
    • 10d Matsui K, Ishigami T, Yamaguchi T, Yamaguchi E, Tada N, Miura T, Itoh A. Synlett 2014; 25: 2613

      Promoters used with oxidant H2O2, see:
    • 11a Urea: Gupta S, Chaudhary P, Srivastava V, Kandasamy J. Tetrahedron Lett. 2016; 57: 2506
    • 11b Biosilica: Mahanta A, Adhikari P, Bora U, Thakur AJ. Tetrahedron Lett. 2015; 56: 1780
    • 11c H3BO3: Gogoi K, Dewan A, Gogoi A, Borah G, Bora U. Heteroat. Chem. 2014; 25: 127
    • 11d Al2O3: Gogoi A, Bora U. Tetrahedron Lett. 2013; 54: 1821
    • 11e Water extract of rice straw ash: Saikia E, Bora SJ, Chetia B. RSC Adv. 2015; 5: 102723
    • 11f Poly(N-vinylpyrrolidone) (PVD)/poly(4-vinylpyridine) (PVP): Prakash GK. S, Chacko S, Panja C, Thomas TE, Gurung L, Rasul G, Mathew T, Olah GA. Adv. Synth. Catal. 2009; 351: 1567
    • 11g Iodine: Gogoi A, Bora U. Synlett 2012; 23: 1079
    • 11h Amberlite IR-120: Mulakayala N, Ismail Ismail, Kumar KM, Rapolu RK, Kandagatla B, Rao P, Oruganti S, Pal M. Tetrahedron Lett. 2012; 53: 6004
    • 11i Mont K-10@AgNPs: Begum T, Gogoi A, Gogoi PK, Bora U. Tetrahedron Lett. 2015; 56: 95
    • 11j Silica chloride: Wagh RB, Nagarkar JN. Tetrahedron Lett. 2017; 58: 3323
  • 12 Sawant SD, Hudwekar AD, Kumar KA. A, Venkateswarlu V, Singh PP, Vishwakarma RA. Tetrahedron Lett. 2014; 55: 811
  • 13 Saikia I, Hazarika M, Hussian N, Das MR, Tamuly C. Tetrahedron Lett. 2017; 58: 4255
    • 14a Chutia R, Chetia B. J. Chem. Sci. 2019; 131: 48
    • 14b Chutia R, Chetia B. J. Coord. Chem. 2020; 73: 1925
  • 15 Saha A, Payra S, Dutta D, Banerjee S. ChemPlusChem 2017; 82: 1129
  • 16 For a recent review, see: Ke Y, Wang S, Liu G, Li M, White TJ, Long Y. Small 2018; 1802025
    • 17a Luo G, Lv X, Wang X, Yan S, Gao X, Xu J, Ma H, Jiao Y, Li F, Chen J. RSC Adv. 2015; 5: 94164
    • 17b Wanna WH, Janmanchi D, Thiyagarajan N, Ramu R, Tsai Y.-F, Pao C.-W, Yua S.-F. New J. Chem. 2019; 43: 17819
    • 17c Gopinath R, Patel BK. Org. Lett. 2000; 2: 577
  • 18 Phukan S, Mahanta A, Rashid MH. Appl. Catal., A 2018; 562: 58
  • 19 Karthik M, Suresh P. ACS Sustainable Chem. Eng. 2019; 7: 9028
  • 20 Elumalai V, Hansen JH. RSC Adv. 2020; 10: 40582
  • 21 Gawande MB, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 3371
  • 22 Zarnegar Z, Safari J. Green Chem. Lett. Rev. 2017; 10: 235 ; and references cited therein
    • 23a Zhu Y, Wu Q. J. Nanopart. Res. 1999; 1: 393
    • 23b Park J, Lee D, Hwang N.-M, Kang M, Kim SC, Hwang Y, Park J.-G, Noh H.-J, Kim J.-Y, Park J.-H, Hyeon T. Angew. Chem. Int. Ed. 2005; 44: 2872
    • 23c Thapa D, Palkar VR, Kurup MB, Malik SK. Mater. Lett. 2004; 58: 2692
    • 23d Zhuo ZH, Wang J, Liu X, Chan HS. O. J. Mater. Chem. 2001; 11: 1704
    • 23e Vollath D, Szabó DV, Tyalor RD, Willis JO. J. Mater. Res. 1997; 12: 2175
    • 24a Baharin SN. A, Sarih NM, Mohamad S. Polymers 2016; 8: 117
    • 24b Majeed MI, Guo J, Yan W, Tan B. Polymers 2016; 8: 392
  • 25 Danqing L, Ming J, Li L, Mohammadnia M. Appl. Organomet. Chem. 2020; 34: e5820
  • 26 Roth H.-C, Schwaminger SP, Schindler M, Wagner FE, Berensmeier S. J. Magn. Magn. Mater. 2015; 377: 81
    • 27a Whitefield FB, Hill JL, Shaw KJ. J. Agric. Food Chem. 1997; 45: 889
    • 27b Wuilloud RG, Selar N, Kannamkumarath SS, Caruso JA. J. Anal. At. Spectrom. 2004; 19: 1442
    • 27c Garcia-Capdevila L, Lopez-Calull C, Pompermayer S, Arroyo C, Molins-Pujol AM, Bonal J. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1998; 708: 169
    • 28a Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis, 3rd ed. Wiley & Sons; New York: 1999
    • 28b Kocienski PJ. Protecting Groups . Georg Thieme; Stuttgart: 2004

      Selected examples, see:
    • 29a Lourenco NM. T, Afonso CA. M. Tetrahedron 2003; 59: 789
    • 29b Godfrey JD, Mueller RH, Sedergran TC, Soundararajan N, Colandrea VJ. Tetrahedron Lett. 1994; 35: 6405
    • 29c Zhang M, Flynn DL, Hanson PR. J. Org. Chem. 2007; 72: 3194
    • 29d Shah ST. A, Khan KM, Hussain H, Anwar MU, Fecker M, Voelter W. Tetrahedron 2005; 61: 6652
    • 29e Shah ST. A, Khan KM, Heinrich AM, Choudhary MI, Voelter W. Tetrahedron Lett. 2002; 43: 8603
    • 29f Brown Ripin DH, Vetelino M. Synlett 2003; 2353
    • 29g Bu XL, Jing HW, Wang L, Chang T, Jin LL, Liang YM. J. Mol. Catal. A: Chem. 2006; 259: 121
    • 29h Gathirwa JW, Maki T. Tetrahedron 2012; 68: 370
  • 30 Brittain WD. G, Cobb SL. Org. Biomol. Chem. 2019; 17: 2110
  • 31 Hao C, Shen Y, Wang Z, Wang X, Feng F, Ge C, Zhao Y, Wang K. ACS Sustainable Chem. Eng. 2016; 4: 1069
  • 32 A representative procedure for the ipso-hydroxylation: A flask containing a Fe3O4@magnetic bar was charged with phenylboronic acid (3.0 mmol), and H2O2 (aq. 30 wt%, 0.3 mL). Then, the mixture was stirred at room temperature in open air for 5 min. The resulting mixture was then extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with water, then dried with anhydrous Na2SO4, and evaporated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (hexanes/ethyl acetate) to give phenol (2a) in 99% isolate yield as a colorless oily liquid. 1H NMR (400 MHz, CDCl3): δ = 7.28 (t, J = 8.4 Hz, 2 H), 6.99–6.95 (m, 1 H), 6.89–6.85 (m, 2 H), 4.80 (br s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 155.4, 129.7, 120.9, 115.3 ppm.