Synthesis 2022; 54(15): 3432-3472
DOI: 10.1055/s-0040-1719905
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Organic Nitrating Reagents

Subrata Patra
,
Ivan Mosiagin
,
Rahul Giri
,
S.P., I.M., R.G., and D.K. gratefully acknowledge the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation, SNSF, PCEFP2_186964) for the financial support. The generous and continuous support by the Université de Fribourg is acknowledged.


Abstract

Nitro compounds are vital raw chemicals that are widely used in academic laboratories and industries for the preparation of various drugs, agrochemicals, and materials. Thus, nitrating reactions are of great importance for chemists and are even taught in schools as one of the fundamental transformations in organic synthesis. Since the discovery of the first nitrating reactions in the 19th century, progress in this field has been constant. Yet, for many years the classical electrophilic nitration approach using a mixture of strong mineral acids dominated the field. However, in recent decades, the attention of researchers has focused on new reactivity and new reagents that can provide access to nitro compounds in a practical and straightforward way under mild reaction conditions. Organic nitrating reagents have played a special role in this field since they have enhanced reactivity. They also allow nitration to be carried out in an ecofriendly and sustainable manner. This review examines the development and application of organic nitrating reagents.

1 Introduction

2 Organic Nitrating Reagents

2.1 Alkyl Nitrites

2.2 Nitroalkanes

2.3 Alkyl Nitrates

2.4 N-Nitroamides

2.5 N-Nitropyrazole

2.6 N-Nitropyridinium Salts

3 Organic Nitrating Reagents Generated In Situ

3.1 Acyl Nitrates

3.2 Trimethylsilyl Nitrate

3.3 Nitro Onium Salts

4 Organic Nitronium Salts

5 Organic Nitrates and Nitrites

5.1 Ammonium Nitrates

5.2 Heteroarylium Nitrates

5.3 Other Organic Nitrates

5.4 Organic Nitrites

6 Conclusion and Outlook



Publication History

Received: 30 November 2021

Accepted after revision: 10 January 2022

Article published online:
13 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ono N. The Nitro Group in Organic Synthesis . John Wiley & Sons; New York: 2001
    • 1b Nishiwaki N. In Comprehensive Organic Synthesis, 2nd ed., Vol. 6. Molander GA, Knochel P. Elsevier; Oxford: 2014: 100
    • 1c Olah GA, Malhotra R, Narang SC. Nitration: Methods and Mechanisms . VCH; New York: 1989
    • 1d Exner O, Krygowski TM. Chem. Soc. Rev. 1996; 25: 71
  • 2 Parry R, Nishino S, Spain J. Nat. Prod. Rep. 2011; 28: 152
  • 3 Kannigadu C, N’Da D. Curr. Pharm. Des. 2020; 26: 4658
  • 4 Patterson S, Wyllie S. Trends Parasitol. 2014; 30: 289
  • 5 Nepali K, Lee H.-Y, Liou J.-P. J. Med. Chem. 2019; 62: 2851
  • 6 Ju KS, Parales RE. Microbiol. Mol. Biol. Rev. 2010; 74: 250
    • 7a Jones LH. Chem. Biol. 2012; 19: 1086

    • For the influence of nitro group on activity of fluorescent chromophores see:
    • 7b Chen MC, Chen DG, Chou PT. ChemPlusChem 2021; 86: 11
  • 8 Muto K, Okita T, Yamaguchi K. ACS Catal. 2020; 10: 9856
  • 9 Huang J, Ding F, Rojsitthisak P, He F.-S, Wu J. Org. Chem. Front. 2020; 7: 2873
  • 10 Cobb A, Aitken L, Arezki N, Dell’Isola A. Synthesis 2013; 45: 2627
    • 11a Yan G, Yang M. Org. Biomol. Chem. 2013; 11: 2554
    • 11b Qian YE, Zheng L, Xiang HY, Yang H. Org. Biomol. Chem. 2021; 19: 4835
    • 11c Badgujar DM, Talawar MB, Mahulikar PP. Propellants, Explos., Pyrotech. 2016; 41: 24
    • 11d Paul N, Maity S, Panja S, Maiti D. Chem. Rec. 2021; 21: 2896
    • 11e Askani R, Taber DF. Comprehensive Organic Synthesis, Vol. 6. Trost BM, Fleming I. Pergamon; Oxford: 1991: 103
  • 12 Kulkarni AA. Beilstein J. Org. Chem. 2014; 10: 405
  • 13 Majedi S, Majedi S, Behmagham F. Chem. Rev. Lett. 2019; 2: 187
  • 14 Song LR, Fan Z, Zhang A. Org. Biomol. Chem. 2019; 17: 1351
  • 15 Bozorov K, Zhao JY, Aisa HA. ARKIVOC 2017; (i): 41
  • 16 For selected examples on nitrative difunctionalization, see: Chen X, Xiao F, He WM. Org. Chem. Front. 2021; 8: 5206
    • 17a Kornblum N. Org. React. 1962; 12: 101-156
    • 17b Aitken RA, Aitken KM. Science of Synthesis, Vol. 41. Banert K. Georg Thieme Verlag; Stuttgart: 2010: 9
  • 18 Patel SS, Patel DB, Patel HD. ChemistrySelect 2021; 6: 1337
    • 19a Aitken KM, Aitken RA. Science of Synthesis, Vol. 31. Ramsden CA. Georg Thieme Verlag; Stuttgart: 2007: 1183
    • 19b Booth G. Nitro Compounds, Aromatic. In Ullmann’s Encyclopedia of Industrial Chemistry [Online] Posted June 15. John Wiley & Sons; 2000. DOI: 10.1002/14356007.a17_411
    • 20a Ono N. Science of Synthesis, Vol. 33. Molander GA. Georg Thieme Verlag; Stuttgart: 2007: 337
    • 20b Stepanov AV, Veselovsky VV. Russ. Chem. Rev. 2003; 72: 327
    • 20c Hassan M, Nde CN, Manolikakes G. SynOpen 2021; 5: 229
    • 20d Kabalka GW, Varma RS. Org. Prep. Proced. Int. 1987; 19: 283
  • 21 Windler GK, Pagoria PF, Vollhardt KP. C. Synthesis 2014; 46: 2383
  • 22 Mikus A, Łopuszyńska B. Chem. Asian J. 2021; 16: 261
  • 23 Mitscherlich E. Ann. Phys. (Berlin, Ger.) 1834; 107: 625
  • 24 Parker KA, Ledeboer MW, Pettigrew JD. Nitric Acid . In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online] Posted March 15. Wiley & Sons; 2009
  • 25 Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Tetrahedron 2010; 66: 9077
  • 26 Guk YV, Ilyushin MA, Golod EL, Gidaspov BV. Russ. Chem. Rev. 1983; 52: 284
  • 27 Bering L, Antonchick AP. Tetrahedron 2019; 75: 1131
    • 28a Mukhopadhyay S, Batra S. Eur. J. Org. Chem. 2019; 6424
    • 28b Gao M, Ye R, Shen W, Xu B. Org. Biomol. Chem. 2018; 16: 2602
    • 28c Fan Z, Li J, Lu H, Wang D.-Y, Wang C, Uchiyama M, Zhang A. Org. Lett. 2017; 19: 3199
    • 28d Zhang D, Gao D, Cai J, Wu X, Qin H, Qiao K, Liu C, Fang Z, Guo K. Org. Biomol. Chem. 2019; 17: 9065
  • 29 Liu J. Characteristics of Nitrating Reagents. In Nitrate Esters Chemistry and Technology. Springer; Singapore: 2019: 37-125
  • 30 Zhang K, Jelier B, Passera A, Jeschke G, Katayev D. Chem. Eur. J. 2019; 25: 12929
  • 31 Csende F. Mini-Rev. Org. Chem. 2015; 12: 127
  • 32 Song SZ, Dong Y, Ge GP, Li Q, Wei WT. Synthesis 2020; 52: 796
  • 33 Dahiya A, Sahoo AK, Alam T, Patel BK. Chem. Asian J. 2019; 14: 4454 ; and references therein
  • 34 Koley D, Colon OC, Savinov SN. Org. Lett. 2009; 11: 4172
  • 35 Wei W.-T, Zhu W.-M, Liang W, Wu Y, Huang H.-Y, Huang Y.-L, Luo J, Liang H. Synlett 2017; 28: 2153
  • 36 Kilpatrick B, Heller M, Arns S. Chem. Commun. 2013; 49: 514
  • 37 Chaudhary P, Gupta S, Muniyappan N, Sabiah S, Kandasamy J. J. Org. Chem. 2019; 84: 104
  • 38 Ji Y.-F, Yan H, Jiang Q.-B. Eur. J. Org. Chem. 2015; 2051
  • 39 Majhi B, Kundu D, Ahammed S, Ranu BC. Chem. Eur. J. 2014; 20: 9862
  • 40 Whiteoak CJ, Planas O, Company A, Ribas X. Adv. Synth. Catal. 2016; 358: 1679
  • 41 Mondal S, Samanta S, Hajra A. Adv. Synth. Catal. 2018; 360: 1026
  • 42 Wan L, Qiao K, Yuan X, Zheng M.-W, Fan B.-B, Di ZC, Zhang D, Fang Z, Guo K. Adv. Synth. Catal. 2017; 359: 2596
  • 43 Saxena P.; Kapur M. Chem. Asian J. 2018, 13, 861.
  • 44 Zhao J, Li P, Xia C, Li F. RSC Adv. 2015; 5: 32835
  • 45 Wu X, Schranck J, Neumann H, Beller M. Chem. Commun. 2011; 47: 12462
  • 46 Taniguchi T, Yajima A, Ishibashi H. Adv. Synth. Catal. 2011; 353: 2643
  • 47 Manna S, Jana S, Sahoo T, Maji A, Maiti D. Chem. Commun. 2013; 49: 5286
  • 48 Rokade B, Prabhu K. Org. Biomol. Chem. 2013; 11: 6713
  • 49 Maity S, Naveen T, Sharma U, Maiti D. Org. Lett. 2013; 15: 3384
  • 50 Taniguchi T, Sugiura Y, Hatta T, Yajima A, Ishibashi H. Chem. Commun. 2013; 49: 2198
  • 51 Allen J, Boar RB, McGhie JF, Barton DH. R. J. Chem. Soc., Perkin Trans. 1 1973; 2402
  • 52 Hirose D, Taniguchi T. Beilstein J. Org. Chem. 2013; 9: 1713
  • 53 Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480
  • 54 Gao L.-H, Meng X.-X, Wang Y.-N, Song S.-Z, Ge G.-P, Dong Y, Wei W.-T, Liu Y.-Y, Li Q. Asian J. Org. Chem. 2019; 8: 348
  • 55 Dutta U, Maity S, Kancherla R, Maiti D. Org. Lett. 2014; 16: 6302
  • 56 Yan H, Rong G, Liu D, Zheng Y, Chen J, Mao J. Org. Lett. 2014; 16: 6306
  • 57 Yan H, Mao J, Rong G, Liu D, Zheng Y, He Y. Green Chem. 2015; 17: 2723
  • 58 Lin Y, Kong W, Song Q. Org. Lett. 2016; 18: 3702
  • 59 Zhang W, Ren S, Zhang J, Liu Y. J. Org. Chem. 2015; 80: 5973
  • 60 Wu D, Zhang J, Cui J, Zhang W, Liu Y. Chem. Commun. 2014; 50: 10857
  • 61 Zhou Y, Tang Z, Song Q. Chem. Commun. 2017; 53: 8972
  • 62 Wei W.-T, Zhu W.-M, Ying W.-W, Wang Y.-N, Bao W.-H, Gao L.-H, Luo Y.-J, Liang H. Adv. Synth. Catal. 2017; 359: 3551
  • 63 Liu Y, Zhang J.-L, Song R.-J, Qian P.-C, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 9017
  • 64 Shen T, Yuan Y, Jiao N. Chem. Commun. 2014; 50: 554
  • 65 Hao X.-H, Gao P, Song X.-R, Qiu Y.-F, Jin D.-P, Liu X.-Y, Liang Y.-M. Chem. Commun. 2015; 51: 6839
  • 66 Wei W.-T, Ying W.-W, Bao W.-H, Gao L.-H, Xu X.-D, Wang Y.-N, Meng X.-X, Chen G.-P, Li Q. ACS Sustainable Chem. Eng. 2018; 6: 15301
  • 67 Yang X.-H, Ouyang X.-H, Wei W.-T, Song R.-J, Li J.-H. Adv. Synth. Catal. 2015; 357: 1161
  • 68 Hu M, Liu B, Ouyang X.-H, Song R.-J, Li J.-H. Adv. Synth. Catal. 2015; 357: 3332
  • 69 Deng G.-B, Zhang J.-L, Liu Y.-Y, Liu B, Yang X.-H, Li J.-H. Chem. Commun. 2015; 51: 1886
  • 70 Feng T, He Y, Zhang X, Fan X. Adv. Synth. Catal. 2019; 361: 1271
  • 71 Chen D, Ji M, Zhu C. Chem. Commun. 2019; 55: 7796
  • 72 Hernando E, Castillo RR, Rodríguez N, Arrayás GR, Carretero CJ. Chem. Eur. J. 2014; 20: 13854
  • 73 Potter TG, Jayson CG, Miller JG, Gardiner MJ. Tetrahedron Lett. 2015; 56: 5153
  • 74 Natarajan T, Chaudhary R, Rani N, Sakshi, Venugopalan P. Tetrahedron Lett. 2020; 61: 151529
  • 75 Zhang Y, Zhang S, Sun Z, Yuan Y, Jia X. Asian J. Org. Chem. 2019; 8: 2205
  • 76 Rosini G, Ballini R. Synthesis 1998; 833
    • 77a Golisz SR, Hazari N, Labinger JA, Bercaw JE. J. Org. Chem. 2009; 74: 8441
    • 77b Potturi HK, Gurung RK, Hou Y. J. Org. Chem. 2012; 77: 626
    • 77c Yan Y, Niu B, Xu K, Yu J, Zhi H, Liu Y. Adv. Synth. Catal. 2016; 358: 212
  • 78 Klemm LH, Hall E, Sur SK. J. Heterocycl. Chem. 1988; 25: 1427
  • 79 Mudithanapelli C, Dhorma L, Kim M. Org. Lett. 2019; 21: 3098
  • 80 Liang P. Org. Synth. 1941; 21: 105
  • 81 Penczek S, Jagur-Grodzinski J, Szwarc M. J. Am. Chem. Soc. 1968; 90: 2174
  • 82 Bedford CD, Nielsen AT. J. Org. Chem. 1978; 43: 2460
  • 83 Rathore R, Kochi JK. J. Org. Chem. 1996; 61: 627
  • 84 Masnovi JM, Kochi JK. Recl. Trav. Chim. Pays-Bas. 1986; 105: 286
  • 85 Sankararamen S, Kochi JK. J. Chem. Soc., Perkin Trans. 2 1991; 1
    • 86a Roussel J, Lemaire M, Guy A, Guette JP. Tetrahedron Lett. 1986; 27: 27
    • 86b Coombes RG, Hadjigeorgiou P, Jensen DG, Morris DL. Nitrocyclohexadienones in Aromatic Nitration . In Nitration . Albright LF, Carr RV. C, Schmitt RJ. ACS Symposium Series 623; American Chemical Society; Washington DC: 1996: 19
    • 87a Lemaire M, Guy A, Roussel J, Guette JP. Tetrahedron 1987; 43: 835
    • 87b Lemaire M, Guy A, Boutin P, Guette JP. Synthesis 1989; 761
    • 87c Parker DL, Meng D, Ratcliffe RW, Wilkening RR, Sperbeck DM, Greenlee ML, Colwell LF, Lambert S, Birzin ET, Frisch K, Rohrer SP, Nilsson S, Torsell AG, Hammond ML. Bioorg. Med. Chem. Lett. 2006; 16: 4652
    • 87d Arnatt CK, Adams JL, Zhang Z, Haney KM, Li G, Zhang Y. Bioorg. Med. Chem. Lett. 2014; 24: 2319
    • 87e Ban H, Muraoka M, Ohashi N. Tetrahedron 2005; 61: 10081
    • 87f Yu Y, Singh SK, Liu A, Li TK, Liu LF, LaVoie EJ. Bioorg. Med. Chem. 2003; 11: 1475
    • 87g Zielinska B. Polycyclic Aromat. Compd. 1990; 1: 207
    • 88a Lambson KE, Dacko CA, McNeill JM, Akhmedov NG, Söderberg BC. Tetrahedron 2019; 75: 130714
    • 88b Pan G, Yang K, Ma Y, Zhao X, Lu K, Yu P. Bull. Korean Chem. Soc. 2015; 36: 1460
  • 89 Coombes RG. J. Chem. Soc., Perkin Trans. 2 1992; 1007
  • 90 Coombes RG, Ridd JH. J. Chem. Soc., Chem. Commun. 1992; 174
  • 91 Arnatt CK, Zhang Y. Tetrahedron Lett. 2012; 53: 1592
  • 92 Olah GA, Lin HC. Synthesis 1973; 488
  • 93 Olah GA, Lin HC. J. Am. Chem. Soc. 1974; 96: 2892
  • 94 Hauser FM, Baghdanov VM. J. Org. Chem. 1988; 53: 2872
    • 95a Tsang SM, Paul AP, DiGiaimo MP. J. Org. Chem. 1964; 29: 3387
    • 95b Boschan R, Merrow RT, Van Dolah RW. Chem. Rev. 1955; 55: 485
    • 95c Feuer H. The Alkyl Nitrate Nitration of Active Methylene Compounds . In Industrial and Laboratory Nitrations . Albright LF, Hanson C. ACS Symposium Series 22; American Chemical Society; Washington DC: 1976: 160-175
    • 95d Thiele J. Ber. Dtsch. Chem. Ges. 1900; 33: 666
    • 95e Wislicenus W, Endres A. Ber. Dtsch. Chem. Ges. 1902; 35: 1755
  • 96 Wieland H, Garbsch P, Chavin JJ. Justus Liebigs Ann. Chem. 1928; 461: 295
  • 97 Feuer H, Shepherd JW, Savides C. J. Am. Chem. Soc. 1956; 78: 4364
    • 98a Feuer H, Vincent EF. Jr. J. Org. Chem. 1964; 29: 939
    • 98b Feuer H, Monter RP. J. Org. Chem. 1969; 34: 991
    • 98c Feuer H, Auerbach M. J. Org. Chem. 1970; 35: 2551
    • 98d Feuer H, Spinicelli LF. J. Org. Chem. 1976; 41: 2981
    • 98e Feuer H, Van Buren WD. II, Grutzner JB. J. Org. Chem. 1978; 43: 467
    • 98f Fetell AI, Feuer H. J. Org. Chem. 1978; 43: 497
    • 98g Feuer H, McMillan RM. J. Org. Chem. 1979; 44: 3410
    • 99a Feuer H, Lawrence JP. J. Org. Chem. 1972; 37: 3662
    • 99b Feuer H, Lawrence JP. J. Org. Chem. 1973; 38: 417
  • 100 Oxley CJ, Smith LJ, Moran SJ, Canini NJ, Almog J. Tetrahedron Lett. 2008; 49: 4449
  • 101 Emmons WD, Freeman JP. J. Am. Chem. Soc. 1955; 77: 4387
  • 102 Narang SC, Thompson MJ. Aust. J. Chem. 1978; 31: 1839
  • 103 Bamberger E. Ber. Dtsch. Chem. Ges. 1920; 53: 2321
  • 104 White W, Wolfarth E, Klink J, Kindig J, Hathaway C, Lazdins D. J. Org. Chem. 1961; 26: 4124
  • 105 Winters LJ, Learn DB, Desai SC. J. Org. Chem. 1965; 30: 2471
  • 106 Bottaro JC, Schmitt RJ, Bedford CD. J. Org. Chem. 1987; 52: 2292
    • 107a Coburn MD, Ungnade HE. J. Heterocycl. Chem. 1965; 2: 308
    • 107b Kauffman HF, Burger A. J. Org. Chem. 1954; 19: 1662
    • 107c Calvo R, Zhang K, Passera A, Katayev D. Nat. Commun. 2019; 10: 3410
  • 108 Zhang K, Budinska A, Passera A, Katayev D. Org. Lett. 2020; 22: 2714
  • 109 Lu L, Liu H, Hua R. Org. Lett. 2018; 20: 3197
  • 110 Park Y.-D, Kim H.-K, Kim J.-J, Cho S.-D, Kim S.-K, Shiro M, Yoon Y.-J. J. Org. Chem. 2003; 68: 9113
    • 111a Hüttel R, Büchele F. Chem. Ber. 1955; 88: 1586
    • 111b Kurpet M, Jędrysiak R, Suwiński J. Chem. Heterocycl. Compd. 2013; 48: 1737
    • 112a Janssen JW. A. M, Habraken CL. J. Org. Chem. 1971; 36: 3081
    • 112b Klebe KJ, Habraken CL. Synthesis 1973; 294
    • 112c Rao NE, Ravi P, Tewar SP, Rao VS. J. Mol. Struct. 2013; 1043: 121
  • 113 Tarimci C, Schempp E. Acta Crystallogr., Sect. B 1977; 33: 240
  • 114 Olah GA, Narang SC, Fung AP. J. Org. Chem. 1981; 46: 2706
  • 115 Santaniello E, Ravasi M, Ferraboschi P. J. Org. Chem. 1983; 48: 739
  • 116 Hamada H, Larkem A. Res. J. Pharm. Biol. Chem. Sci. 2018; 9: 803
  • 117 Olah GA, Olah JA, Overchuk NA. J. Org. Chem. 1965; 30: 3373
  • 118 Cupas CA, Pearson RL. J. Am. Chem. Soc. 1968; 90: 4742
    • 119a Olah GA, Narang SC, Pearson RL, Cupus CA. Synthesis 1978; 452
    • 119b Olah GA. Acc. Chem. Res. 1980; 13: 330
    • 119c Olah GA, Narang SC, Olah JA, Pearson RL, Cupas CA. J. Am. Chem. Soc. 1980; 102: 3507
    • 120a Zelenov VP, Khakimov DV, Troyan IA, Khodot EN, Subbotina IR. Mendeleev Commun. 2018; 28: 641
    • 120b Zeng X, Yao L, Wang W, Liu F, Sun Q, Ge M, Sun Z, Zhang J, Wang D. Spectrochim. Acta, Part A 2006; 64: 949

    • For chemo-physical properties of series of nitronium salts see:
    • 120c Zelenov VP, Bukalov SS, Leites LA, Bushmarinov IS, Struchkova MI, Dmitrienko AO, Tartakovsky VA. ChemistrySelect 2017; 2: 11886
    • 121a Orton KJ. P. J. Chem. Soc. 1902; 81: 806

    • The first application of acetyl nitrate (and benzyl nitrate) in organic synthesis was, probably, made in 1884, however, at this point its structure was not determined and it was not used for nitration, see:
    • 121b Lachowicz B. Ber. Dtsch. Chem. Ges. 1884; 17: 1281
  • 122 Pictet A, Genequand P. Ber. Dtsch. Chem. Ges. 1902; 35: 2526
  • 123 Pictet A, Khotinsky E. Ber. Dtsch. Chem. Ges. 1907; 40: 1163
  • 124 König W. Angew. Chem. 1955; 67: 157
  • 125 Hoare J, Duddu R, Damavarapu R. Org. Process Res. Dev. 2016; 20: 683
  • 126 For the synthesis of acetyl nitrate from ketene, see: Reuter M. DE 849405C, 1952
  • 127 Vandodi R, Viala R. Meml. Serv. Chim. Etat. 1945; 32: 80
  • 128 Burton H, Praill PF. G. J. Chem. Soc. 1955; 729
  • 129 Bordwell FG, Garbish EW. Jr. J. Am. Chem. Soc. 1960; 82: 3588
    • 130a Friedli EF, Shechter H. J. Org. Chem. 1985; 50: 5710
    • 130b Kartsev V, Shikhaliev KS, Geronikaki A, Medvedeva SM, Ledenyova IV, Krysin MY, Petrou A, Ciric A, Glamoclija J, Sokovic M. Eur. J. Med. Chem. 2019; 175: 201
    • 130c Hurd CD, Kreuz KL. J. Am. Chem. Soc. 1952; 74: 2965
    • 130d Morley JO, Matthews TP. Org. Biomol. Chem. 2006; 4: 359
    • 130e Groshens JT, Davis CM. Tetrahedron Lett. 2012; 53: 4154
    • 130f Zhang Y, Dan W, Fang X. Organometallics 2017; 36: 1677
    • 130g Cornfort J, Cornforth RH, Gray RT. J. Chem. Soc., Perkin Trans. 1 1982; 2289
    • 130h Lu Y, Li Y, Zhang R, Jin K, Duan C. Tetrahedron 2013; 69: 9422
    • 130i Smith K, Musson A, DeBoos GA. J. Org. Chem. 1998; 63: 8448
    • 130j Pelkey ET, Gribble GW. Synthesis 1999; 1117
    • 130k Dell’Erba C, Guanti G, Garbarino G. J. Heterocycl. Chem. 1974; 11: 1017
    • 131a Haouas M, Bernasconi S, Kogelbauer A, Prins R. Phys. Chem. Chem. Phys. 2001; 3: 5067
    • 131b Bernasconi S, Pirngruber GD, Kogelbauer A, Prins R. J. Catal. 2003; 219: 231
    • 131c Deng H.-L, Luo X.-S, Lin Z, Niu J, Huang M.-H. J. Org. Chem. 2021; 86: 16699
    • 132a Drefahl G, Crahmer H. Chem. Ber. 1958; 91: 745
    • 132b Bordwell FG, Garbisch EW. Jr. J. Org. Chem. 1962; 27: 2322
    • 132c Bordwell FG, Garbisch EW. Jr. J. Org. Chem. 1963; 28: 1765
    • 132d Bordwell FG, Garbisch EW. Jr. J. Org. Chem. 1962; 27: 3049
    • 132e Kogan TP, Gaeta FA. Synthesis 1988; 706
    • 132f Krasnikov PE, Osyanin VA, Osipov DV, Klimochkin YN. Russ. J. Gen. Chem. 2016; 86: 262
    • 132g Megges R, Weiland J, Undeutsch B, Büchting H, Schön R. Steroids 1997; 62: 762
    • 132h Morzycki JW, Wilczewska AZ. Tetrahedron 1997; 53: 10565
  • 133 Patil GS, Nagendrappa G. Chem. Commun. 1999; 1079
    • 134a Das J, Schmidt RR. Eur. J. Org. Chem. 1998; 1609
    • 134b Kancharla PK, Reddy YS, Dharuman S, Vankar YD. J. Org. Chem. 2011; 76: 5832
    • 135a Marquis R. Ann. Chim. Phys. 1905; 4: 216
    • 135b Freure BT, Johnson JR. J. Am. Chem. Soc. 1931; 53: 1142
    • 135c Kolb VM, Darling SD, Koster DF, Meyers CY. J. Org. Chem. 1984; 49: 1636
    • 136a Wolfrom ML, McFadden GH, Chaney A. J. Org. Chem. 1960; 25: 1079
    • 136b Frankel M. J. Org. Chem. 1958; 23: 1811
    • 136c Seepersaud M, Seecharan S, Lalgee LJ, Jalsa NK. Synth. Commun. 2017; 47: 853
    • 136d Giziewicz J, Wnuk SF, Robins MJ. J. Org. Chem. 1999; 64: 2149
  • 137 Sifniades S. J. Org. Chem. 1975; 40: 3562
  • 138 Capilato JN, Pellegrinelli PJ, Bernard J, Schnorbus L, Philippi S, Mattiucci J, Hoy EP, Perez L. Org. Biomol. Chem. 2021; 19: 5298
  • 139 Chemagin AV, Yashin NV, Grishin YK, Kuznetsova TS, Zefirov NS. Synthesis 2010; 259
  • 140 Chentsova A, Ushakov DB, Seeberger PH, Gilmore K. J. Org. Chem. 2016; 81: 9415
  • 141 Bach RD, Taaffee TH, Holubka JW. J. Org. Chem. 1980; 45: 3439
  • 142 Mohammed AH, Nagendrappa G. J. Chem. Sci. 2010; 122: 571
  • 143 Louw R, Vermeeren HP, Van Asten JJ, Ultée WJ. J. Chem. Soc., Chem. Commun. 1976; 496
  • 144 Ogata Y, Sawaki Y, Kuriyama Y. Tetrahedron 1968; 24: 3425
  • 145 Francis F. Ber. Dtsch. Chem. Ges. 1906; 39: 3798
    • 146a Kurz ME, Yang LT. A, Zahora EP, Adams RC. J. Org. Chem. 1973; 38: 2271
    • 146b Fujimoto M, Sato T, Hata K. Bull. Chem. Soc. Jpn. 1967; 40: 600
    • 146c Berti G, Da Settimo A, Nannipieri E. J. Chem. Soc. C. 1968; 2145
    • 146d Nagy SM, Yarovoy KA, Shakirov MM, Shubin VG, Vostrikova LA, Ione KG. J. Mol. Catal. 1991; 64: L31
  • 147 Gold V, Hughes ED, Ingold CK. J. Chem. Soc. 1950; 2467
  • 148 Pervez H, Rees L, Suckling CJ. J. Chem. Soc., Chem. Commun. 1985; 512
  • 149 Pervez H, Onyiriuka SO, Rees L, Rooney JR, Suckling CJ. Tetrahedron 1988; 44: 4555
  • 150 Bachman G, Biermann T. J. Org. Chem. 1970; 35: 4229
  • 151 Zelenov VP, Bukalov SS, Leites LA, Aysin RR, Subbotin AN, Struchkova MI, Fedyanin IV. Mendeleev Commun. 2017; 27: 31
  • 152 Smith K, Ajarim MD, El-Hiti GA. Catal. Lett. 2010; 134: 270
    • 153a Crivello JV. J. Org. Chem. 1981; 46: 3056

    • Nitration with nitrates in TFA was reported before, however, in this case, nitrating reagent is, probably, nitronium cation:
    • 153b Spitzer UA, Stewart R. J. Org. Chem. 1974; 39: 3936
  • 154 Katritzky AR, Scriven EF, Majumder S, Akhmedova RG, Akhmedov NG, Vakulenko AV. ARKIVOC 2005; (iii): 179
  • 155 Smith K, Gibbins T, Millar RW, Claridge RP. J. Chem. Soc., Perkin Trans. 1 2000; 2753
  • 156 Salzbrunn S, Simon J, Prakash GS, Petasis NA, Olah GA. Synlett 2000; 1485
    • 157a Wade PA, Paparoidamis N, Miller CJ, Costa SA. Can. J. Chem. 2019; 97: 591

    • For other selected examples of nitration of the C=C bond with TFAN, see:
    • 157b Ma X, Lubin H, Ioja E, Kékesi O, Simon Á, Apáti Á, Orbán TI, Héja L, Kardos J, Markó IE. Bioorg. Med. Chem. Lett. 2016; 26: 417
    • 157c Rank W. Tetrahedron Lett. 1991; 32: 5353
    • 157d Bloom AJ, Mellor JM. J. Chem. Soc., Perkin Trans. 1 1987; 2737
    • 158a Romea P, Aragones M, Garcia J, Vilarrasa J. J. Org. Chem. 1991; 56: 7038
    • 158b Ariza X, Farràs J, Serra C, Vilarrasa J. J. Org. Chem. 1997; 62: 1547
    • 158c Ariza X, Bou V, Vilarrasa J. J. Am. Chem. Soc. 1995; 117: 3665
    • 158d Alarcón SH, Jiménez JA, Claramunt RM, Limbach HH, Elguero J. Magn. Reson. Chem. 2000; 38: 305
    • 158e Baral B, Kumar P, Anderson BA, Østergaard ME, Sharma PK, Hrdlicka PJ. Tetrahedron Lett. 2009; 50: 5850
  • 159 Gavrila A, Andersen L, Skrydstrup T. Tetrahedron Lett. 2005; 46: 6205
  • 160 Ji L, Qian C, Liu MX, Chen XZ. J. Chem. Res. 2011; 35: 101
  • 161 Hendry DG, Kenley RA. J. Am. Chem. Soc. 1977; 99: 3198
  • 162 Taylor OC. J. Air Pollut. Control Assoc. 1969; 19: 347
  • 163 Wendschuh PH, Pate CT, Pitts JN. Jr. Tetrahedron Lett. 1973; 14: 2931
  • 164 Kurz ME, Fozdar RL, Schultz SS. J. Org. Chem. 1974; 39: 3336
  • 165 Kimura M, Kajita K, Onoda N, Morosawa S. J. Org. Chem. 1990; 55: 4887
  • 166 Shahi SP, Gupta A, Pitre SV, Reddy MV. R, Kumareswaran R, Vankar YD. J. Org. Chem. 1999; 64: 4509
  • 167 Prakash GK. S, Panja C, Mathew T, Surampudi V, Petasis NA, Olah GA. Org. Lett. 2004; 6: 2205
  • 168 Olah GA, Lin HC, Olah JA, Narang SC. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1045
  • 169 Olah GA, Gupta BG. B, Narang SC. J. Am. Chem. Soc. 1979; 101: 5317
  • 170 Iranpoor N, Firouzabadi H, Nowrouzi N, Firouzabadi D. Tetrahedron Lett. 2006; 47: 6879
  • 171 Nowrouzi N, Jonaghani MZ. Tetrahedron Lett. 2011; 52: 5081
  • 172 Kloeckner U, Nachtsheim BJ. Chem. Commun. 2014; 50: 10485
  • 173 Chatterjee N, Bhatt D, Goswami A. Org. Biomol. Chem. 2015; 13: 4828
  • 174 Wan Y, Zhang Z, Ma N, Bi J, Zhang G. J. Org. Chem. 2019; 84: 780
  • 175 Reitti M, Villo P, Olofsson B. Angew. Chem. Int. Ed. 2016; 55: 8928
    • 176a Juarez-Ornelas KA, Jimenez-Halla JO. C, Kato K, Solorio-Alvarado CR, Maruoka K. Org. Lett. 2019; 21: 1315
    • 176b Sasmal S, Sinha SK, Lahiri GK, Maiti D. Chem. Commun. 2020; 56: 7100
  • 177 Marziano NC, Tomasin A, Sampoli M. J. Chem. Soc., Perkin Trans. 2 1991; 1995
    • 178a Schmeisser M, Sartori P, Lippsmeier B. Z. Naturforsch., B 1973; 28: 573
    • 178b Yarbro SK, Noftle RE, Fox WB. J. Fluorine Chem. 1975; 6: 187
    • 178c Yagupol’skii LM, Malentina II, Orda VV. Zh. Org. Khim. 1974; 10: 2226
    • 178d Effenberger F, Geke J. Synthesis 1975; 40
  • 179 Coon CL, Blucher WG, Hill ME. J. Org. Chem. 1973; 38: 4243
  • 181 Fernandez LE, Ben Altabef A, Varetti EL. Vib. Spectrosc. 1995; 9: 287
  • 182 Duddu R, Damavarapu R. Synth. Commun. 1996; 26: 3495
    • 183a Sedenkova KN, Averina EB, Grishin YK, Bacunov AB, Troyanov SI, Morozov IV, Deeva EB, Merkulova AV, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2015; 56: 4927
    • 183b Sedenkova KN, Averina EB, Grishin YK, Kolodyazhnaya JV, Rybakov VB, Vasilenko DA, Steglenko DV, Minkin VI, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2017; 58: 2955
  • 184 Morse PD, Jamison TF. Angew. Chem. Int. Ed. 2017; 56: 13999
  • 185 Olah GA, Laali KK, Sandford G. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 6670
  • 186 Olah GA, Orlinkov A, Oxyzoglou AB, Prakash GS. J. Org. Chem. 1995; 60: 7348
  • 187 Zyk NV, Lapin YuA, Nesterov EE, Ugrak BI, Zefirov NS. Zh. Org. Khim. 1995; 31: 840
  • 188 Anuradha V, Srinivas PV, Aparna P, Rao JM. Tetrahedron Lett. 2006; 47: 4933
  • 189 Beutner GL, Desai L, Fanfair D, Lobben P, Anderson E, Leung SW, Eastgate MD. Org. Process Res. Dev. 2014; 18: 1812
  • 190 Zyk NV, Nesterov EE, Khlobystov AN, Zefirov NS. Russ. Chem. Bull. 1996; 45: 1259
  • 191 Dharuman S, Vankar YD. n-Tetrabutylammonium Nitrate . In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online] Posted October 20. Wiley & Sons; 2014
  • 192 Masci B. J. Org. Chem. 1985; 50: 4081
  • 193 Evans PA, Longmire JM. Tetrahedron Lett. 1994; 35: 8345
  • 194 Dharuman S, Gupta P, Kancharla PK, Vankar YD. J. Org. Chem. 2013; 78: 8442
  • 195 Deghati PY, Bieräugel H, Wanner MJ, Koomen GJ. Tetrahedron Lett. 2000; 41: 569
  • 196 Rodenko B, Wanner MJ, Koomen GJ. J. Chem. Soc., Perkin Trans. 1 2002; 1247
  • 197 Rodenko B, Koch M, Van Der Burg AM, Wanner MJ, Koomen GJ. J. Am. Chem. Soc. 2005; 127: 5957
  • 198 Adams CM, Sharts CM, Shackelford SA. Tetrahedron Lett. 1993; 34: 6669
  • 200 Shackelford SA, Anderson MB, Christie LC, Goetzen T, Guzman MC, Hananel MA, Kornreich WD, Li H, Pathak VP, Rabinovich AK, Rajapakse RJ, Truesdale LK, Tsank SM, Vazir HN. J. Org. Chem. 2003; 68: 267
  • 201 Aridoss G, Laali KK. J. Org. Chem. 2011; 76: 8088
  • 202 Nikoorazm M, Ghorbani-Choghamarani A, Goudarziafshar H. Sci. Iran., Trans. C 2011; 18: 1353
  • 203 Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Kruger HG, Asgari Z, Khakyzadeh V, Kazem-Rostami M. J. Org. Chem. 2012; 77: 3640
  • 204 Sepehrmansourie H, Zarei M, Zolfigol MA, Mehrzad A, Hafizi-Atabak HR. RSC Adv. 2021; 11: 8367
  • 205 Zarei M, Noroozizadeh E, Moosavi-Zare AR, Zolfigol MA. J. Org. Chem. 2018; 83: 3645
  • 206 Moosavi-Zare AR, Zolfigol MA, Zarei M, Noroozizadeh E, Beyzavi MH. RSC Adv. 2016; 6: 89572
  • 207 Nemati F, Lurestani Pour H. Sci. Iran., Trans. C 2015; 22: 2326
  • 208 Albadi J, Shirinib F, Abedini M, Seiadatnasab T. J. Iran. Chem. Res. 2012; 5: 155
  • 209 Chen YQ, Jiang H. Org. Chem. Int. 2011; 753142
    • 210a Majumdar MP, Kudav NA. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1976; 14: 1012
    • 210b Nabar VB, Kudav NA. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1977; 15: 89
  • 211 Nagarajan R, Muralidharan D, Perumal PT. Synth. Commun. 2004; 34: 1259
  • 212 Sura TP, Ramana MM. V, Kudav NA. Synth. Commun. 1988; 18: 2161
  • 213 Verma S, Pandita S, Jain SL. Tetrahedron Lett. 2014; 55: 1320
  • 214 Almog J, Klein A, Sokol A, Sasson Y, Sonenfeld D, Tamiri T. Tetrahedron Lett. 2006; 47: 8651
  • 215 Li SY, Guan ZY, Xue J, Zhang GY, Guan XY, Deng QH. Org. Chem. Front. 2020; 7: 2449
  • 216 Zhang P, Cedilote M, Cleary TP, Pierce ME. Tetrahedron Lett. 2007; 48: 8659
  • 217 For example, AgNO3 could be used in diethyl ether: Natarajan PN, Lan NT. J. Med. Chem. 1972; 15: 329
    • 218a Munz R, Simchen G. Liebigs Ann. Chem. 1979; 628
    • 218b Eichinger WV, Musso H, Eichhorn KD, Mattern G. J. Prakt. Chem. 1998; 340: 140
    • 218c Tishkov AA, Schmidhammer U, Roth S, Riedle E, Mayr H. Angew. Chem. Int. Ed. 2005; 44: 4623
  • 220 Zarchi MA. K, Zarei A. J. Chin. Chem. Soc. 2005; 52: 309
  • 221 Saito S, Koizumi Y. Tetrahedron Lett. 2005; 46: 4715
  • 222 LaBeaume P, Placzek M, Daniels M, Kendrick I, Ng P, McNeel M, Afroze R, Alexander A, Thomas R, Kallmerten AE, Jones GB. Tetrahedron Lett. 2010; 51: 1906
  • 223 Blum S, Nickel C, Schäffer L, Karakaya T, Waldvogel SR. ChemSusChem 2021; 14: 4936
  • 224 Akhlaghinia B, Pourali AR. Turk. J. Chem. 2010; 34: 753