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Introduction

Coronaviruses are small, enveloped, positive-sense single-
stranded RNA viruses which can infect multiple species. A
unique group of beta-coronaviruses have caused severe dis-
ease in humans over the past few decades, including severe
acute respiratory syndrome (SARS)-CoV, Middle East respira-

tory syndrome (MERS), and, most recently, SARS-CoV-2
(COVID-19).1 Coronaviruses are very common and clinical
symptoms can range from asymptomatic and mild (“cold”
symptoms) to moderate to severe symptoms, including fever,
upper and lower respiratory tract infection, gastrointestinal
symptoms, and even the progression into systemic inflamma-
tory response syndrome (SIRS), acute respiratory distress
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Abstract SARS-CoV-2 infection (COVID-19) results in local and systemic activation of inflamma-
tion and coagulation. In this review article, we will discuss the potential role of
coagulation factor Xa (FXa) in the pathophysiology of COVID-19. FXa, a serine protease,
has been shown to play a role in the cleavage of SARS-CoV-1 spike protein (SP), with the
inhibition of FXa resulting in the inhibition of viral infectivity. FX is known to be
primarily produced in the liver, but it is also expressed by multiple cells types, including
alveolar epithelium, cardiac myocytes, and macrophages. Considering that patients
with preexisting conditions, including cardiopulmonary disease, are at an increased risk
of severe COVID-19, we discuss the potential role of increased levels of FX in these
patients, resulting in a potential increased propensity to have a higher infectious rate
and viral load, increased activation of coagulation and inflammation, and development
of fibrosis. With these observations in mind, we postulate as to the potential
therapeutic role of FXa inhibitors as a prophylactic and therapeutic treatment for
high-risk patients with COVID-19.
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syndrome (ARDS), and multi-organ dysfunction syndrome
(MODS).2–4 COVID-19 was first detected in Wuhan, China, in
December 2019. It has since rapidly spread throughout the
world, with a very high infectivity rate but withmixed clinical
symptoms.5 The cause of thewide range of clinical symptoms
is likely multifactorial, including route of exposure and infec-
tiousdose, baselinehealthstatusof thepatient, andpotentially
differences between the various strains of SARS-CoV-2 that
continue to develop over time.6,7 While many patients who
havebeendiagnosedwithCOVID-19areasymptomaticorhave
mild signs, such as a cough or sore throat, men, patients �
60 years old, and those with preexisting conditions, such as
obesity, pulmonary disease, cardiovascular disease, or diabe-
tes, have been subject to much more severe symptoms and a
highermortality rate.8–13 In this reviewarticle,wewill discuss
the known and proposed mechanisms by which COVID-19
successfully infectshost cells, how thismechanism leads to the
resulting pathophysiology of the disease, and potential thera-
peutic approaches to reduce these pathologic effects, allwith a
focus on the potential role of coagulation factor X (FX).

Coronavirus Mechanism of Infection and
Cellular Tropism

To evaluate the potential role of FX in the pathogenesis of
SARS-CoV-2 infection, wemust first review the basic biology
of the virus and its cellular tropism that leads to its localiza-
tion to specific organ systems. Coronaviruses are composed
of RNA and proteins internally and then a nuclear envelope
with spike glycoproteins. The SPs are peplomers that deter-
mine the cellular host tropism. SP contains a type II fusion
machine (spike protein 2 [S2]) and a receptor bindingdomain
(RBD) on spike protein 1 (S1).14,15 For both SARS and COVID-
19, one of the primary host cells receptors that the SP binds
to is angiotensin-converting enzyme 2 (ACE2).16–19 ACE2
plays a primary role in the renin–angiotensin system (RAS)
and, more specifically, reduces angiotensin II (ATII) levels
which are associated with increased inflammation, apopto-
sis, fibrosis, and oxidative stress.20,21 Binding of the SP to
ACE2 has been shown to reduce cellular ACE2 expression,
induced by viral shedding of the receptor, and increase
inflammatory cytokine production, such as tumor necrosis
factor (TNF)-α. Increased levels of ATII, such as with the
blocking or reduction of ACE2, has been shown to play a role
in the pathophysiology of ARDS as well as diabetes.16–21

Once the SP is bound to ACE2, the SP is subject to
proteolytic cleavage into S1 and S2.20 One of the most
well-known proteolytic enzymes that performs SP cleavage
is transmembrane protease, serine 2 (TMPRSS2).22–24

TMPRSS2 colocalizes with ACE2 on multiple cell types,
including type II pneumocytes and cardiac myocytes and is
thought to play a key role in the infection of the pulmonary
and cardiovascular system.8,25–29 Once cleaved, S1 is re-
leased (along with ACE2) and S2 remains attached to the
host cell, playing a role in cell–virus cellular membrane
fusion. Membrane fusion is the first step in the active
infection of the cell, in which the genetic material and
proteins from the virus are inserted into the host cell and

replicate. The new virions are then released, commonly
causing cellular stress and cell death, thus further promoting
inflammation while increasing the body’s viral load.14,15,30

Based on the mechanism of infection, it is not surprising
that patients with comorbidities, such as heart disease, pul-
monary disease, and diabetes, are at increased risk due to
potential baseline changes in ACE2 expression, changes in RAS
systemactivation, andpreexistingpulmonaryorcardiac injury
with fibrosis, inflammation, or both. In these cases, it is
thought that the virus localizes within these already-compro-
mised organ systems and, through viral infection, increases
local inflammation and oxidative and cellular stress resulting
in pulmonary and cardiovascular damage.3,8,24,31

Coagulation Factor X and Coronavirus Spike
Protein

While TMPRSS2 has been shown to be one of the primary
proteolytic enzymes that cleaves coronavirus SP, this cleav-
age can be accomplished via multiple other enzymes which
bind to the SP. Studies with SARS virus have demonstrated
that coagulation factor Xa (FXa) is capable of cleaving SARS
SP into S1 and S2 in a dose-dependent manner. The addition
of Ben-HCl, a protease and FXa inhibitor (FXai), was shown to
inhibit SP cleavage by FXa and the addition of Ben-HCl also
inhibited in vitro cell infectivity.32 Interestingly, these find-
ings are consistent with various studies demonstrating that
heparin treatment has antiviral activity in in vitro experi-
ments with CoV, influenza, metapneumovirus, human
immunodeficiency virus (HIV), respiratory syncytial virus
(RSV), and hepatitis.33–37 Similarly, additional studies have
demonstrated the role of various coagulation factors, includ-
ing FXa, factor IIa (FIIa; thrombin), and plasmin, as proteases,
which act upon SARS SP.38

FX is a coagulation factor and serine protease, which is
vitamin K dependent and primarily synthesized by the
liver.39 Interestingly, FX has been shown to be expressed in
other cells types, including alveolar and bronchiolar epithe-
lium, cardiac myocytes, and brain tissue, cells that also
happen to express ACE2.29,40–46 While TMPRSS2 was
thought to be the primary protease responsible for the
cleavage of COVID-19 SP due to its colocalization with
ACE2 on host cells, it is likely that FX expression (along
with other coagulation factors such as FIIa) by these cellsmay
also serve as a localized protease which can cleave SP upon
host cell receptor binding (►Fig. 1).

Factor X and Its Potential Role in the
Pathophysiology of Coronavirus Infection

FX and FXa play a role in the pathophysiology and progres-
sion of various forms of cardiopulmonary disease. Although
FX/FXa is most commonly known to be present in soluble
form within the circulatory system, it is also expressed by
multiple cell types, including alveolar and bronchiolar epi-
thelium.41 In the alveolar and bronchiolar epithelium, the
presence of reactive oxygen species (ROS) increases the
expression of FX.41,42 FXa has also been shown to be a potent
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inducer of lung fibrosis via transforming growth factor-β
(TGF-β), mediated by proteinase-activated receptor-1
(PAR1).42 FXa is locally expressed within the lung and has
been shown to be one of the factors driving the fibrotic
response to lung injury.42,47,48 Considering that patients
with preexisting pulmonary and cardiac disease appear to
be among the highest risk group for severe COVID-19, it is
possible that these patients may have a higher baseline
expression of FX in these cell populations, putting them at
increased risk of host cell infection, with factor X serving as
one of the cleavage proteins for SARS-CoV-2 (►Fig. 2A).

FX is known to be expressed by cardiac myocytes and
fibroblasts and has been found to be expressed in the heart
following pressure overload. In a recent study, rivaroxaban, a
FXai,wasdemonstrated to reduce inflammation, hypertrophy,

and fibrosis secondary to pressure overload and improve
diastolic function, even at subtherapeutic doses (e.g., doses
that did not affect thrombin generation), and was shown to
correlate with decrease expression of FX in these cell popula-
tions.43 In light of the fact that cardiac myocytes are known to
expressACE2 andFX, at increased levels in cardiac disease, this
poses another probable mechanism by which COVID-19 di-
rectly infects cardiac cells, and potentially at an increased level
in patients with preexisting disease (►Fig. 2B).49–51

In addition to significant effects on the cardiopulmonary
system, SARS-CoV-2 infection has also been shown to be
associated with pathological effects on the brain and the
kidneys.52–55 COVID-19 has been observed to have primary
effects in the brain with patients presenting with confusion,
abnormal behavior, seizures, and brain swelling.53 Not

Fig. 1 The potential role of factor Xa in Co-V cellular infection. Top: The coronavirus (left) binds to multiple cells that express receptors that bind
to the coronavirus spike protein (a). For example, the spike protein can bind to ACE2 receptors, which are present in the alveolar and bronchiolar
epithelium, cardiac myocytes, the brain/central nervous system, the kidneys (primarily the proximal tubules), and the vascular endothelium.
Middle: Once the spike protein is bound to the host cell receptor, a proteolytic enzyme binds to the spike protein to cleave the protein into spike
protein 1 and spike protein 2. In this example, the proteolytic enzyme is serine protease, factor Xa. (bi) Factor X and factor Xa can be expressed by
the host cell directly, allowing for colocalization of the spike protein receptor and the serine protease. (bii) Factor Xa can be present, unbound in
the circulation. (biii) Factor X and factor Xa can be localized to the spike protein by nearby cells expressing factor X and factor Xa, such as
macrophages. Bottom: Once the spike protein is successfully cleaved by the proteolytic enzyme, spike protein 1 is released with or without the
bound host cell receptor, while spike protein 2 aids in the fusion of the viral and host cell membrane. (ci) The virus and host cell membrane are
fused and the viral genetic material is inserted into the host cell. (cii) The viral genetic material replicates within the host cell. (ciii) New
coronavirus viral particles are released by the host cell, resulting in infection of new host cells as well as propagation of inflammation and
coagulation.
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surprisingly, FX was found to be expressed in the rat brain
and central nervous system, which is also known to contain
an abundance of tissue factor as well.44 It is already known
that ACE2 is present within the brain, and it is therefore
plausible that this is another potential site of FX/ACE2
colocalization allowing for COVID-19 binding and infection,
with subsequent inflammation and potential localized acti-
vation of coagulation (►Fig. 2C).45

As with other organ systems involved in MODS in critical-
ly ill patients, the development of microthrombi during the

systemic inflammatory response is a likely culprit for the
development of acute kidney injury during COVID-
19.52,54–56 However, FX also may have its own role in the
development and progression of kidney injury (►Fig. 2D).
For example, the interaction between FXa and protease-
activated receptor 2 (PAR2) has been shown to play a role
in nephritis and glomerular nephritis in animal models. FXa
inhibitors, such as fondaparinux, have been shown to sup-
press the development of proteinuria, glomerular hypertro-
phy, and angiogenesis in diabetic mice and decrease the

Fig. 2 The potential role of factor Xa in the pathophysiology of COVID-19. This figure represents the potential sequelae of COVID-19 in the
context of various organ systems that are known to express factor Xa (FXa). (A) demonstrates the consequences of COVID-19 in both healthy (Ai)
and diseased (Aii) lungs. In the diseased lungs, the presence of preexisting inflammation and fibrosis exacerbates further inflammation and
fibrosis. (B) demonstrates the consequences of COVID-19 in both the healthy (Bi) and diseased (Bii) heart. Similar to the pulmonary system, the
presence of preexisting fibrosis further exacerbates the inflammation and fibrosis secondary to COVID-19. (C) represents both uninfected brain
tissue (Ci) and brain tissue with COVID-19 (Cii). The infected tissue demonstrates an increase in microglial activation, inflammation, and
intravascular thrombosis. Panel D represents the consequences of COVID-19 in both health (Di) and diseased (Dii) kidneys (specifically focusing
on the glomerulus). The infected tissue demonstrates increased inflammation, fibrosis, and capillary thrombosis. Panel E represents blood
vessels and the role of the vascular endothelium in COVID-19. The healthy, uninfected blood vessel (Ei) has an open lumen with laminar blood
flow, while the infected blood vessel (Eii) has endothelial damage resulting in increased inflammation, fibrosis, vascular permeability, thrombosis
formation, and turbulent flow resulting in damage to red blood cells in the form of hemolysis and schistocyte formation.
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thickness of fibrotic tissue and angiogenesis in a model of
peritoneal fibrosis.57,58 The glomeruli itself has a glomerular
procoagulant activity (PCA) that has been under investiga-
tion, with animal studies demonstrating that PCA includes a
unique serine protease that directly activates FX.59 Addition-
ally, in mouse models of lupus nephritis, this unique FX
activator was bound to dense deposits, macrophages, and
endothelial cells of diseased glomeruli.59 This finding is
especially interesting considering that an increasing number
of clinical studies have also demonstrated increased levels of
lupus autoantibodies in patients with COVID-19, although
these may be two very different mechanisms of inflamma-
tion and coagulation derangement.60–62

Recently, the role of the vascular endothelium in the
pathology of COVID-19 has been reported to potentially be
a primary driver in the development of intravascular throm-
bosis and related sequelae.63–67 Although it is beyond the
scope of this article to discuss the very important and vast
role of the endothelium in inflammation and coagulation, we
do want to touch upon the potential role of FX in this
paradigm (►Fig. 2E). Although endothelial cells are currently
most well-known for the activation of prothrombin via
exogenous FXa, they have been shown (in vitro) to produce
a variety of coagulation factor themselves, including factors
VII, IX, X, and tissue factor.68–70 While the endothelium does
express its own coagulation factors, it also is capable of
expressing anticoagulant factors as well, such as tissue factor
pathway inhibitor (TFPI), which serve a protective role.71

Factor X and Its Potential Role in
Coronavirus-Related Inflammation

Coronavirus disease, especially SARS and COVID-19, fre-
quently results in increased plasma inflammatory cytokines,
and evaluation of pulmonary pathology has revealed an
increase in macrophage and lymphocyte infiltration with
fibrin deposition.72,73 Patients suffering from severe corona-
virus infection have also been shown to suffer from various
states of coagulopathy and systemic inflammation.13,74 A
recent article by Masi et al performed a comprehensive
evaluation of multiple coagulation-related biomarkers and
identified that among the coagulation factors, VII, VIII, II, V,
and Xwere significantly elevated in patients with COVID-19-
related ARDS.52 Macrophages are one of the primary inflam-
matory cells involved in the response to coronavirus-related
immune response.75 Some SARS studies have demonstrated
that SARS-CoV is capable of replicating in human peripheral
monocytes and macrophages as well as in alveolar macro-
phages.76,77 Interestingly, alveolar macrophages have been
demonstrated to express FX and FXa, in addition to other
coagulation factors, such as factor VII (FVII), which would
also provide another route of FX activation.78–81 In fact, one
study demonstrated that monocytes and macrophages were
a crucial source of extravascular FX in the tumor microenvi-
ronment promoting tumor immune evasion, with rivarox-
aban treatment improving antitumor immunity.82 In
addition to their role in inflammation and coagulation,
localized macrophages may provide an additional source of

FXa to nearby cells expressing the ACE2 receptor and bound
to coronavirus; this would result in an additional route of SP
cleavage and increased cell infection.

FXa also plays a major role in FIIa-mediated PAR activa-
tion. FXa is upstream of prothrombin (FII) and is capable of
activating FII to FIIa, which cleaves PAR1, PAR3, and PAR4,
resulting in cellular activation. PAR2 is primarily activated by
FXa. PARs are expressed on platelets, leukocytes, and endo-
thelial cells. PAR1 plays a critical role in inflammation and is
present on endothelial cells and fibroblasts. When activated,
PAR1 stimulates the production of monocyte chemoattrac-
tant protein-1 (MCP1), TNF-α, IL1B, IL6, and TGF-β. This PAR1
activation also activates cells, resulting in P- and E-selectin
exposure.83One can imagine that in the case of a patient with
preexisting lung disease, such as idiopathic fibrosis or asth-
ma, where there is already an increase in FX expression and
activation, along with increased PAR1 activation and fibro-
blasts, and that this would create a naturally hospitable
environment for the binding of SARS-CoV-2, increasing cell
infection and the development of severe lung pathology,
such as ARDS (►Fig. 2A). As mentioned in the earlier section,
PAR1 and PAR2 have both been shown to interact with FX/
FXa and play a role in kidney-related inflammation and
thrombosis (►Fig. 2D).57,58 Additionally, the classic concept
of inflammation begetting thrombosis and vice versa is
nicely illustrated by the observation that PAR1 plays a critical
role in thrombin-mediated platelet activation.

Factor Xa Inhibitors as a Potential Treatment
for COVID-19

In this review, we provide support based on previous litera-
ture that FX and FXa may play a role in the infection and
clinical symptoms of COVID-19 patients. We propose that FX
may in fact be an additional colocalized protease on cells
coexpressing ACE2 and may serve as a protease for SP
cleavage. Additionally, the expression of FX/FXa by alveolar
macrophages may provide an additional localized source of
protease for the cleavage of SP. In this model of infectivity,
there is a continuum of pathology, where patients with
preexisting cardiopulmonary inflammatory disease may
have increased baseline levels of ACE2 and FX/FXa, which
increases SARS-CoV-2 binding and infection, leading to
further cellular activation, inflammation, and coagulation
which further perpetuates SARS-CoV-2 replication.

Based on this information, it is no surprise that critically ill
COVID-19 patients have increased inflammatory cytokines
and coagulopathies. Because FX/FXa may play a role in the
pathophysiology of the COVID-19, factor Xa inhibitors rep-
resent a potential novel therapeutic modality (►Fig. 3). The
inhibition of FXa could aid in the reduction of cell infectivity
by reducing FXa-dependent proteolytic cleavage of SP,
whether the FXa is localized on the host cell, released by
nearby cells, or in the circulation. Additionally, FXai could
also help control the inflammation and coagulation-related
stimulation by SARS-CoV-2 infection, whichmay explain the
clinical data suggesting thebenefit of heparin administration
in critical patients.84–86 For example, oral FXai has been
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demonstrated to result in a dose-dependent decreases in
inflammatory cytokines by LPS-activated monocytes.86 This
anti-inflammatory effect, in conjunction with its traditional
anticoagulant effect, can be especially effective in the case of
patients with increased baseline levels of inflammation and
oxidative stress which are present with certain comorbid-
ities, such as pulmonary fibrosis and asthma.

Because coagulation and inflammation are so intertwined,
an increase in inflammationwill likely first trigger an adaptive
and protective hemostatic response—this can quickly turn into
a hypercoagulable response, making it more likely for patients
to develop pathologic thrombosis.83,87,88During this phase, an
increase in fibrin deposition may obstruct alveolar spaces and
micro capillaries.89 There is also an increase in immunothrom-
botic complex formation, such as platelet–leukocyte aggre-
gates, platelet activation, extracellular histone release, and
neutrophil extracellular trap (NET) formation, which further
promotes and exacerbate inflammation and coagulation.89–91

These responses create a perfect storm for the obstruction of
blood vessels and airways resulting in the development of
MODS and ARDS in patients with severe inflammation.89,92,93

Due to thispropensity towardhypercoagulability, it is common
for patients at risk of severe inflammation to receive prophy-
lactic or therapeutic anticoagulant treatment, usually with

unfractionated heparin (UFH) or low-molecular-weight hepa-
rin (LMWH) to prevent the development of venous throm-
boembolisms (VTEs).94,95 In addition to the traditional
intravenous and subcutaneous administration of heparin, in-
haled UFH and LMWH have been proposed and used in the
context of pulmonary inflammation and ARDS, although opti-
mal dosing and formulation is still under investigation.96–99

Poor prognosis is associated with COVID-19 patients who
display systemic inflammation in conjunction with coagulop-
athy, as manifested by increased D-dimers and fibrin degra-
dation products (FDPs).74 It has also been demonstrated that
critically ill COVID-19 patients treated with anticoagulants,
includingUFHandLMWH,haveabetterprognosis as shownby
increased survival and decreased need for mechanical venti-
lation.84,85 Because FXa has been shown to play an important
role in both inflammation and coagulation, there may be a
place for FXai in the treatment of both SARS-CoV-2-related
coagulopathy and SARS-CoV-2-related inflammation and in-
fection, especially in hospitalized patients with low risk of
bleeding. Although injectable indirect FXai are common in the
hospital setting, suchasUFHandLMW,directoral FXai, suchas
rivaroxaban, apixaban, and edoxaban, are easily administered
inanoutpatient and inpatient setting asaonce-a-dayor twice-
a-day pill and may be efficacious in more stable patients.100

Fig. 3 Proposed therapeutic mechanism of factor Xa inhibitor on CoV cellular infection. (Top) SARS coronavirus binds to the host cell expressing
a receptor (purple) that binds to the SARS coronavirus spike protein (blue club-shape). Factor Xa (FXa) then acts as a proteolytic enzyme, cleaving
spike protein into spike protein 1 (pink circle) and spike protein 2 (green diamond). The spike protein 1 then parts from the virus–cell complex
with or without the attached receptor, while spike protein 2 serves to aid in the fusion of the virus and cell membranes. (Bottom) The addition of a
factor Xa inhibitor (FXa) blocks FXa from acting as a proteolytic enzyme, therefore leaving the spike protein intact and preventing virus and host
cell membrane fusion.
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When considering whether a FXa inhibitor would be a
potential COVID-19 therapeutic, it is important to take into
account the stage and severity of the disease. For example, the
administration of an oral FXai may be more appropriate
and efficacious in an outpatient setting, where a patient
may be symptomatic but otherwise stable; whereas, a patient
who requires hospitalization, who likely has more severe
inflammation and coagulation derangement, may benefit
from an injectable anticoagulant, such as heparin, which can
also target multiple coagulation factors simultaneously (FXa
and FIIa), has a short half-life, and is easily reversible with
protamine should urgent invasive procedure be necessary, or
direct thrombin inhibitors, suchas argatrobanandbivalirudin,
such as in the case of heparin-induced thrombocytopenia, or
heparin resistance secondary to decreased levels of AT.83,84,101

Multiple clinical trials have been started for the treatment of
coagulation-related pathology, including for the prevention of
VTE, and other treatments aimed at ARDS pathology secondary
to SARS-CoV-2 infection, including the administration of in-
haled UFH with N-acetylcysteine (HOPE clinical trial), for the
prevention of clot formation and the loosening of mucous
secretions, and the administration of inhaled tissue plasmino-
gen activator (tPA), for the breakdown of fibrin clots that are
already formed and are obstructing the airways and vessels.102

Although not being evaluated as an anticoagulant, hydroxy-
chloroquine and azithromycin, another drug combination that
is being explored for the treatment of COVID-19, have also been
shown to have anticoagulant properties via alternative mech-
anisms.103–108 In addition to being used as an antimalarial,
hydroxychloroquinehas also been usedmore as a treatment for
systemic lupus erythematosus, which poses another potential
mechanism bywhich this combinationmay have anticoagulant
effects during COVID-19.60–62,109

If FXai are confirmed to be effective in the reduction of SP
cleavage and cell infectivity, the administration of FXai may
also serve as an outpatient treatment for patients who have
recently been infected, patients at high riskofexposure, and for
patients in the high-risk category by reduction of FXa levels.
This is quite speculative, but in this scenario the FXaiwould be
multimodal in action, including VTE prevention, anti-inflam-
matory, and, potentially, antiviral effects. Recent retrospective
studies evaluated whether the administration of anticoagula-
tion and antiplatelet drugs had any protective effect on
patients with COVID-19 and found conflicting results.110,111

One study found no significant difference in outcomes, includ-
ing mortality and mechanical ventilation; however, this study
utilized a propensity-matched cohort, which limited the anti-
coagulation sample size to <150 patients and the authors do
not clarify which anticoagulant was administered, if antipla-
telets were given simultaneously, and therewas no control for
anticoagulation treatment regimen once admitted into the
hospital.110 The second study, also small with a patient
population of 70, evaluated elderly patientswith chronic heart
disease that were on anticoagulants for at least 6months prior
to the diagnosis of COVID-19-related interstitial pneumonia
and found that direct oral anticoagulants (DOACs), factor IIa
and factor Xa inhibitors, appeared to be significantly protec-
tive.111 Although this is an important study and a step in the

right direction, the authors acknowledge that more thorough
studies need to be performed.

Limitations
While in this review we go through the potential mecha-
nisms by which FX/FXa may be involved with the patho-
physiology of COVID-19, to date, there are no mechanistic in
vitro studies that have been published exploring this ques-
tion. Currently, the majority of publications have been clini-
cal observations and retrospective studies, including
reporting of currently available laboratory coagulation assay
results as well as clinical outcomes for patients on various
anticoagulation regimens. There is one study that evaluated
the concentration of various coagulation factors in COVID-19
and non-COVID-19-related ARDS which did identify that
there was a significant difference (increase) in the amount
of FX in the COVID-19 ARDS patients.52 Due to the high
infectious rate and strain on the medical and scientific
community, it is not surprising that most research has
been limited to observational studies. Additionally, antico-
agulation protocols vary between institutions and countries
and are constantly changing, making it difficult to perform
controlled prospective studies.112 Although most clinicians
agree that anticoagulation therapy is likely warranted in
hospitalized patients with COVID-19, the drug choice and
dosing paradigm is quite variable.113–116 Outpatient studies
are evenmore difficult to perform due to the requirement for
quarantining if COVID-19 positive and the lack of availability
of accurate, rapid, point-of-care diagnostic tests.

There are retrospective studies that can be performed that
may help in the evaluation of the potential protective effects of
FXai on COVID-19 clinical outcomes, specifically in patients
who were on a FXai at the time of infection, such as patients
with AFib. When performing these studies, it will be important
to take into account the comorbidities of the patients and
stratify the study groups accordingly to provide a true compari-
son of clinical outcomes. For example, it would be inappropriate
to compare a60-year-old patient on an FXai for atrialfibrillation
(AFib) to a 90-year-old patient on FXai for AFibwith concurrent
congestiveheart failure and/or chronic lungdisease, as the latter
will have a significantly higher chance of developing severe
COVID-19. Additionally, due to COVID-19 testing limitations, it
is likely that only the patients who develop symptoms will be
captured in such a retrospective study and will miss those
patients who may have been exposed and infected, but did not
get ill enough to seek testing and/or medical care. This type of
large dataset analysis could provide valuable information re-
garding whether coagulation status at the time of SARS-CoV-2
infection is a factor in the progression and severity of COVID-19
andwhether FXai may be protective in asymptomatic andmild
COVID-19 patients.

Hypercoagulability and Inflammation Are
Intimately Related to COVID-19 and the
Link Is Not Limited to Factor X

While we focus on the potential role of FXa in COVID-19-
related disease in this review, there are multiple other
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mechanisms of coagulation/inflammation activation, includ-
ing platelet-mediated, complement-mediated, and endotheli-
um-mediatedpathways that should not be ignored. In fact, it is
almost certain that there are various pathways activated
simultaneously via different routes during different phases
of COVID-19. While FXa inhibition may be found to be effica-
cious early on in the disease, it would not be surprising if
patients with severe inflammation and derangement of their
coagulationsystem, suchas those requiring intensive careand/
or mechanical ventilation, may benefit from anticoagulants
that are further downstream of the FXa pathway, such as
thrombin inhibition via UFH or a direct thrombin inhibitor.
This is especially true in the cases such as widespread endo-
thelium involvement with excess tissue factor expression and
thrombin generation. In fact, the level of systemic inflamma-
tion and clinical status of the patient, such as whether admit-
ted to the intensive care unit, may be one of the explanations
for the variation in clinical reports on the frequency of
thromboembolism and location of the thrombi.116–118 Addi-
tionally, current reports and studies are very geographically
diverse and describe observations in a wide variety of patient
populations which likely impose additional important con-
founding variables, including differences in health care status,
suchasgenetics, comorbidities, and socioeconomicstatus, that
can affect the severity andprogression of the disease aswell as
the ability to seek early treatment.119

It is likely that a multimodal approach to coagulation
management, exploring other factor inhibitors (factor XII or
XI/XIa), platelet inhibitors, PAR inhibitors, and complement
inhibitors (for which many drugs are currently under inves-
tigation), may be the most beneficial approach. Ideally,
treatment would include a combination of anti-inflammato-
ry and anticoagulant drugs along with an antiviral agent (if
and when available). A close examination at the role of
platelets in COVID-19 is also justified, considering the lack
of consistent thrombocytopenia that is typically present in
other systemic inflammatory conditions.120 Just as control
for pain and inflammation often requires a polypharmacy
approach, such as the administration of opioid or local
anesthetic in combinationwith nonsteroidal anti-inflamma-
tory agents, management of complex coagulation derange-
ment may also benefit from this type of approach, such as
combining anticoagulation with anti-inflammatory agents,
such as steroids, in patients with severe COVID-19.121 New
anticoagulants under development and in clinical trials, such
as factor XI/XIa inhibitors, may prove to be beneficial as both
anti-inflammatory and anticoagulant agents, similar to fac-
tor Xa inhibitors.122 At this time, these drugs are not yet
currently commercially available and, upon the involvement
of the extrinsic coagulation pathway, such as with endothe-
lial cell tissue factor expression, there may be a need for a
common pathway coagulation inhibitor, such as a factor Xa
or IIa inhibitor. In fact, there may be a strong case for the
eventual use of factor XI/XII inhibitors and factor Xa/IIa
inhibitors simultaneously, as both target different inflam-
mation and coagulation activation pathways and may work
synergistically, although dosing will need to be worked out
so as to not result in overanticoagulation and adverse

bleeding events. There is also the potential to explore the
administration of FXai and other factor inhibitors via direct
inhalation, as with the studies with UFH and tPA, for the
treatment of respiratory distress and ARDS, although both
dose and formulationwould need to be optimized and tested.

While this article does focus on the potential role of FX in
the propagation of inflammation and coagulation in the
setting of COVID-19, it is important to keep in mind that
the activation of the coagulation pathway does not always
result in pathology, and is primarily meant to be protective
against the consequences of infection and trauma. For ex-
ample, FX/FXa has been shown to interact directly with PAR-
2 and indirectly with endothelial protein C receptor–depen-
dent recruitment of PAR-1 and appears to play a protective
role.123 As the pathophysiology of COVID-19 is better under-
stood and more tailored therapeutic approaches to anti-
coagulation are evaluated, it will be essential to ensure
that the protective role of the coagulation pathway is not
completely eliminated and that we do not cause adverse
bleeding events. Similar to the use of steroids for the treat-
ment of infection-related inflammation, there are always
two sides of the coin, where steroids can reduce inflamma-
tion while also inhibiting the body’s ability to appropriately
respond to and control the invading pathogen.124

Conclusion

In this review, we discuss the potential role of coagulation
factor Xa in themechanism of infection and pathophysiology
of COVID-19. The potential role of FXa in COVID-19 illness is
multimodal, including participating in SP cleavage and cell
infection, and perpetuating immune cell activation, local and
systemic inflammation and coagulation. Patients with pre-
existing conditions, including heart and lung disease, are at
an increased risk for severe illness secondary to SARS-CoV-2
infection and it is known that FXa may play a role in both
cardiac dysfunction and acute and chronic pulmonary in-
flammation and fibrosis. FX/FXa is also coexpressed in
multiple cells that express ACE2, both of which have been
shown to be increased in expression during various acute
and chronic disease states. Based on this information, the
administration of FXai may be a potential prophylactic and
therapeutic treatment for COVID-19, resulting in the reduc-
tion of cell infectivity and, therefore, viral load, as well as the
reduction in systemic inflammation and coagulation. Further
studies, exploring the role of coagulation factors in COVID-19
and the potential of FXai as therapeutic agents, alone and in
combination with other therapeutics, are warranted.
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