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Objectives The purpose of this study was to evaluate the effect of bacterial cellulose 
nanocrystals (BCNCs) on the mechanical properties of resin-modified glass ionomer 
cements (RMGICs) including compressive strength (CS), diametral tensile strength 
(DTS), and modulus of elasticity (E).
Materials and Methods BCNCs were incorporated into RMGIC at various concen-
trations (0.3, 0.5, and 1 wt%). Unmodified RMGIC was used as the control group. The 
specimens were stored in distilled water at 37°C for 24 hours. CS and DTS, as well as 
modulus of elasticity, were evaluated using a universal testing machine. The nano-
structure of BCNCs was observed via field emission scanning electron microscopy.
Statistical Analysis One-way analysis of variance and post-hoc Tukey tests were 
used for data analysis. Level of significance was at p < 0.05.
Results The addition of BCNCs to RMGIC led to an increase in all of the tested 
mechanical properties compared with the control group, with a significant increase 
observed for 1 wt% BCNC. CS and DTS improved up to 23%, and modulus of elasticity 
increased by 44%.
Conclusions The addition of BCNCs to the RMGIC improved the mechanical proper-
ties, including CS, elastic modulus, and DTS. Thus, the newly developed RMGICs with 
BCNCs might represent an ideal and promising novel dental material in restorative 
dentistry.
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Introduction
Glass ionomer cements (GICs), which were introduced by 
Wilson and Kent in the early 1970s, are considered as the 
treatment choice in various clinical situations since they 
offer great benefits. These advantages include chemical 
adhesion to tooth structure, anticariogenic activity due to 

fluoride release, biocompatibility, and low coefficient of 
thermal expansion, which makes it similar to that of tooth 
structure.1 However, some drawbacks such as low mechani-
cal strength, brittleness, and low wear resistance have made 
GICs far from being used as direct restorative materials in the 
load-bearing area.2
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To fortify the benefits and overcome the shortcom-
ings of the conventional GIC, resin-modified glass iono-
mer cements (RMGICs) were introduced. Yet, the addition 
of 2-hydroxyethyl methacrylate (HEMA) in RMGICs led to 
greater water uptake and swelling of the resin matrix due to 
the hydrophilic composition of HEMA.3 Water leads to hydro-
lysis and plasticization of the resin-polyacrylate matrix, 
which might in turn deteriorate the mechanical properties 
of the cement.4 Therefore, RMGICs possess some desired 
properties over their conventional counterparts. However, 
drawbacks of RMGICs still need to be overcome. These defi-
cits principally origin from their weak mechanical strength, 
including wear resistance, compressive strength (CS), and 
diametral tensile strength (DTS).

Nowadays, novel GIC designs have been introduced and 
various methods have been described by several researchers 
to ameliorate the mechanical and physical properties of glass 
ionomer restoratives. For instance, the addition of amalgam 
into the GIC powder was performed with the aim of refining the 
mechanical properties of these restorative materials. Yet, this 
combination has led to a diminished esthetics and lower bond 
strength to the enamel.5 The mechanical properties of GICs have 
also been improved by integrating with short silicon carbide 
fibers.6 However, it has been reported that these tiny fibers can 
accumulate in vital organs and produce toxicity similar to those 
of asbestos fibers.7 Moreover, numerous efforts have been con-
ducted to enhance the GIC fillers by means of adding filler par-
ticles including hydroxyapatite,8 zirconia,9 ytterbium fluoride/
barium sulfate,10 and silver11 into GICs. Yet, none of these meth-
ods have led to considerable reinforcements in wear resistance 
and mechanical strengths of GICs.

The great advancement in nanotechnology along with 
an urge for viable developments have led to the popular-
ity of cellulose application because of its sustainable prop-
erties, harmlessness, abundance, low density, and little 
thermal expansion.12 The cellulose nanocrystals (CNCs) 
are extremely crystalline cellulose-derived structures that 
demonstrate outstanding mechanical strength. The CNCs, 
which have an average of 100 to 250 nm length and 5 to 15 
nm diameter, are formed by acid hydrolysis of any natural 
source of cellulose. Nowadays, cellulose nanoparticles are 
among the most widely used materials in the improvement 
of mechanical properties in dental practice. CNCs form a 
solid scaffold in different directions within the material and 
greatly improve the mechanical properties by establishing 
hydrogen bonds.13,14 It is noteworthy to mention that the 
cellulose produced by some bacteria has a nanometer-sized 
width, even before going through processing. Bacterial cel-
lulose is unique due to its high crystallinity,15 high water 
retention capability,16 and excellent mechanical17 and ther-
mal properties,18 which is why many researchers prefer bac-
terial nanocelluloses for medical applications.

Although several studies have been performed to investigate 
various mechanical properties of RMGICs,19-22 no research has 
been conducted to assess the effect of bacterial cellulose nano-
crystals (BCNCs) on mechanical properties of RMGICs. Therefore, 
the purpose of this study was to evaluate the effect of BCNCs in 
three volumetric masses of 0.3, 0.5, and 1 wt% on the mechanical 

properties of RMGICs. The null hypothesis of our study was that 
there would be no difference between the mechanical properties 
of RMGIC and BCNC-containing RMGIC.

Materials and Methods
A total of 80 specimens were prepared in this study. The 
specimens were divided into four main groups (n = 20): 
Group I (RMGIC powder, control), Group II (RMGIC powder 
with 0.3 wt% BCNC), Group III (RMGIC powder with 0.5 wt% 
BCNC), and Group IV (RMGIC powder with 1 wt% BCNC). 
Then the specimens of each group were divided into two 
subgroups for the CS and DTS tests (n = 10).

Sample Preparation
In this study, BCNC powder (Nano Novin Polymer Co.; Gorgan, 
Golestan, Iran) was used. Bacterial cellulose was extracted 
from Gluconacetobacter genus.

BCNC powders were weighed carefully to an accu-
racy of 0.001 g by means of a digital scale (GR-3000, A & D 
CL Toshiba, Tokyo, Japan) and were added to the previously 
weighed RMGIC powder (Fuji II, GC, Tokyo, Japan) containing 
95% fluoroaluminosilicate glass (amorphous) and 5% poly-
acrylic acid using the correct concentration for each group (0.3, 
0.5, or 1 wt%). To obtain a uniform powder in the specimens, 
initially RMGIC and BCNC powders were hand mixed and then 
the obtained powder was placed in amalgam capsules in an 
amalgamator (Ultramat 2, SDI, Australia) for 20 seconds.23

Then the resultant powder was mixed with RMGIC liq-
uid (Fuji II) containing 20 to 30% distilled water, 20 to 30% 
polyacrylic acid, and 30 to 35% HEMA24 in accordance with 
manufacturer’s instructions (3/2 g: 1 g).

To determine CS and DTS, specimens were prepared 
in a cylindrical stainless-steel split mold (4 mm diame-
ter and 8 mm height) in the same procedure described by 
ISO 9917-1:2017.25

The mold was placed on the top of Mylar strip rested on a 
glass plate and the mold was filled with the material. Then a 
second piece of Mylar strip was placed on the material in the 
mold and pressed by another glass plate under hand pres-
sure to remove excess material. The light cured specimens 
were eradicated for 20 seconds trough Mylar strip using 
light-emitting diode at light intensity of 1,500 mW/cm2 and 
a wavelength range of 440 to 480 nm (Coltolux II, Coltene, 
Ohio, United States). The glass plate and celluloid Mylar strip 
were then carefully removed. After removing the specimens, 
the specimens were cured from the other side to ensure that 
the samples were completely cured.

The specimens were placed in distilled water (37°C) for 24 
hours prior to the experiment. For each test (CS and DTS), a 
total of 40 samples (n = 10) were placed in the universal test-
ing machine (Instron, Z020. Zwick Roell, Germany).

Compressive Strength Test
For the CS measurement, the specimens were located 
lengthwise between the platens of the machine and com-
pressed at a crosshead speed of 1 mm/min. The maximum 
load required to fracture each specimen was documented 
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and the CS in mega Pascal (MPa) was measured using this 
formula: CS: 4F/πd2

Where d is sample diameter and F is the force loaded at 
the moment of fracture.

Diametral Tensile Strength Test
For the DTS, the samples were placed between the platens of 
the machine along their diameter. The tensile strength was 
measured according to the following formula:

Diametral traction tension: 2F/πdl
Where d is sample diameter, F is the force loaded at the 

moment of fracture, and l is the primary sample length.

Modulus of Elasticity
Young’s modulus for each specimen was determined accord-
ing to the slope of the plotted graphs for CS produced by the 
universal testing machine.

E: σ/ε = (F/A)/(△L/L)

Where A is the diagonal cross-section, △L is the length 
change during compression test, L is the primary sample 
length, and F is the force loaded at the moment of fracture.

Field Emission Scanning Electron Microscopy
For field emission scanning electron microscopy (FESEM) 
analysis, a thin layer of gold-palladium was used to cover 
the representative specimen in BCNC experimental group. 
Using 10–15 kV electron beam, the specimens were 
witnessed by FESEM (CS-3500, Shimadzu, Kyoto, Japan) at 
magnifications of 1,000× and 75,000× (►Fig. 1).

Statistical Analysis
For data analysis, the mean and standard deviation (SD) val-
ues of all groups were obtained using Statistical Package for 
the Social Sciences version 15.0 (Microsoft, Illinois, United 
States). The average and SD were used for data description. To 
evaluate the homogeneity of data, the Kolmogorov-Smirnov 
test was used. One-way analysis of variance (ANOVA) and 
post-hoc Tukey tests were used for data analysis. Significance 
level was p < 0.05.

Results
The mean ± SD values of CS, DTS, and modulus of elasticity (E) 
of various trial groups are shown in ►Table 1. The results of 
one-way ANOVA revealed that there was a significant differ-
ence between CS values of different tested groups (p = 0.010).

As shown in ►Table  1, the highest CS was observed in 
group IV (1% wt), which was significantly greater than the CS 
of the control group (p = 0.007). No significant difference was 
found between the CS of the 1% wt group and that of 0.5% wt 
(p = 0.804) and 0.3% w/w (p = 0.565).

Furthermore, a significant difference was observed 
between modulus of elasticity (E) of the CS values of different 
experimental groups (p < 0.001).

As shown in ►Table  1, the modulus of elasticity (E) of 
the CS values of the control group was significantly lower 
than 0.3% w/w, 0.5% wt, and 1% wt groups (p < 0.001).

Moreover, there was a significant difference between DTS 
values of different experimental groups (p = 0.002).

As revealed in ►Table 1, the highest DTS was observed in 
group IV (1% wt), which was significantly greater than the 
DTS of the control group (p = 0.001). No significant difference 
was found between the DTS of the 1wt group and that of 0.5% 
wt (p = 0.249) and 0.3% wt (p = 0.055).

►Figure 1 shows representative FESEM images of 1 wt% 
BCNC in cementitious mass of RMGIC with a net-like struc-
ture and reveals the size of BCNC.

Discussion
The current study evaluated the effect of adding BCNCs on 
the mechanical properties of RMGICs. The null hypoth-
esis was rejected. The result of this study showed that the 
RMGICs containing 1 wt% BCNCs represented significantly 
higher CS and DTS compared with the control group. Thus, 
adding BCNC to the RMGIC can increase the strength of the 
newly developed GICs without any difficulty with regard to 
clinical applications.

Nowadays, attention has been given to modern technol-
ogies in dentistry for the introduction of new restorative 
materials. In this regard, the introduction of cellulosic fibers, 
especially CNCs, aimed to meet such demands and were in 
line with the objectives for the production of renewable bio-
materials and green development.26

The cellulose examined in the present study was derived 
from bacteria as this type of cellulose can be readily pro-
cessed into nanocrystals. These nanocrystals are applied 
as strengthening constituents in producing polymers with 
high-performance applications. Bacterial cellulose presents a 
wider range of application compared with its herbal counter-
parts due to its exclusive thermo-mechanical characteristics 
and biocompatibility.27,28 Therefore, the reinforced mechan-
ical properties of bacterial cellulose-modified GICs might 
offer more durable and long-term restorations prepared with 
this restorative cement.

Previously, low concentrations of CNCs have been found 
considerably sufficient to enhance the mechanical strength 
of composites. In fact, according to Silva et al,29 when the 

Fig. 1 Field emission scanning electron microscopy images of 1 wt% 
bacterial cellulose nanocrystal BCNC-containing resin-modified glass 
ionomer cement: (A) 1,000× magnification showing the net-like 
structure of BCNC within cementitious mass; (B) 75,000× magnifica-
tion showing the size of BCNC.
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concentrations of CNCs were more than 1 wt%, the nanopar-
ticles accumulated, leading to the failure of composites’ 
mechanical properties. Thus, in the present study, concen-
trations of 0.3, 0.5, and 1 wt% of BCNCs were used for the 
investigation of mechanical properties.

The results showed that the addition of 1 wt% BCNC to 
RMGIC led to a significant increase in the mechanical proper-
ties of the RMGIC. Furthermore, the addition of 0.3, 0.5, and 
1 wt% of BCNCs to RMGICs resulted in a significant increase 
in the modulus of elasticity of the CS of these materials com-
pared with the control group.

CS and flexural strength are regarded as load-bearing 
capacity indicators of a restorative dental material.30 GIC is a 
brittle material with a tensile strength distinctly lower than 
its CS. In fact, this material fails by dissemination of crack 
under tensile rather than compressive forces.31 Studying 
scanning electron microscopy confirmed that the addition of 
nanoparticles reduced porosity, with no differences between 
the materials.22 Therefore, it seems that the addition of BCNCs 
can fill spaces in the defects and impede the dissemination 
of previously present pores by blocking their paths, which in 
turn stops the pores from forming cracks and improves the 
DTS of RMGICs. It has been shown that an improvement in 
this property is hardly achievable in GICs.32 Therefore, this 
finding can be of high clinical significance since it is essential 
for GICs located in the load-bearing areas to resist the masti-
catory occlusal forces produced within their structure.

The FESEM image in this study revealed that the incorpo-
ration of BCNC to the RMGIC led to the creation of an inter-
connected network of BCNC, which was randomly distributed 
within the GIC matrix. Silva et al29 have previously shown that 
the nanoscale size of the CNC fibers assists the dissemination 
of CNCs in the GIC matrix and facilitates the creation of a web-
like arrangement within the matrix. As a consequence, this 
significant improvement in the mechanical properties of the 
BCNC-incorporated RMGICs can be attributed to the uniform 
dissemination of the interrelated nanocrystals in the cement 
matrix. In addition, BCNC’s ability to form a hydrogen bonding 
with the hydroxyl groups of the glass particles and carboxylic 
groups of the polyacrylic acid can be another possible expla-
nation for the RMGIC’s improved mechanical strength.

The formation of the network made by BCNCs adher-
ing to the GIC particles may be explicated by the inherent 
self-association of the BCNCs. In fact, an electrostatic inter-
action occurs between the positive charges of the GIC and 
the negative charges of the BCNC that, in turn, causes cement 
reinforcement.33 This innate feature of the BCNC also helps 

in forming auxiliary architectures for the percolation of load 
into the cement matrix.34 Following this network formation, 
a substantial strengthening effect of the RMGIC was found 
in all the tested properties. DTS, CS, and elastic modulus 
increased from 18.64, 133.60, and 1,151.60 MPa in the con-
trol group to 22.84, 164.54, and 1,663.64 MPa in the 1 wt% 
added BCNCs, respectively.

In line with our findings, Silva et al29,35,36 showed that the 
addition of a small amount of a nanoparticulate renewable 
material in the form of CNCs significantly increased the CS 
and DTS strengths of restorative GICs. In a recent study, 
CNCs were used in combination with titanium oxide (TiO2) 
nanoparticles as an additive to GIC. It was reported that 
the physical properties of the modified GIC reinforced with 
2 wt% TiO2 nanoparticles and 1 wt% of CNC showed signifi-
cant improvement.37

Given the desired mechanical strength of the BCNC- 
incorporated RMGICs observed in this study, the RMGIC 
modified with 1 wt% BCNC might provide a practicable 
restorative material to be used under stress, which could help 
decrease tooth loss.

One of the limitations of this study was that the cur-
rent research was conducted in-vitro. The in-vitro results 
obtained in the present study do not necessarily validate 
those achieved in vivo. For this matter, there is an urge for 
clinical studies to confirm in-vitro findings. Moreover, only 
compressive and tensile tests were performed in our study. 
The future of RMGICs modified with BCNCs still requires 
further investigations on other properties of these novel 
materials. Properties such as color stability and biocompat-
ibility are needed to be studied for the comprehensive find-
ing of the properties and characteristics of these materials.

Conclusions
It was found that the addition of 1 wt% of BCNC to the RMGIC 
considerably improved all the tested properties, including CS, 
DTS, and elastic modulus. Thus, the newly developed RMGICs 
with BCNCs might represent an ideal and promising novel 
dental material in restorative dentistry.
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