Derivation and Validation of a Predictive Score for Disease Worsening in Patients with COVID-19

Grigoris T. Gerotziafas1,2, Theodoros N. Sergentanis3, Guillaume Voiriot4, Ludovic Lassel5, Chryssa Papageorgiou6, Alexandre Elabbadi4, Matthieu Turpin4, Patrick Vandreden7, Loula Papageorgiou1,2, Theodora Psaltopoulou3, Evangelos Terpos3, Meletios-Athanasios Dimopoulos3, Antoine Parrot8, Jacques Cadranel8, Gilles Pialoux5, Muriel Fartoukh4, Ismail Elalamy1,2

1 Research Group ‘Cancer, Haemostasis and Angiogenesis,’ INSERM U938, Centre de Recherche Saint-Antoine, Institut Universitaire de Cancérologie, Faculty of Medicine, Sorbonne University, Paris, France
2 Service d’Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l’Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France
3 Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
4 Sorbonne Université, Service de Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique - Hôpitaux de Paris, Paris, France
5 Service des Maladies Infectieuses et Tropicales, Hôpital Tenon, Hôpitaux Universitaires de l’Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France
6 Service Anesthésie, Réanimation et Médecine Périopératoire, Hôpital Tenon, Hôpitaux Universitaires de l’Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France
7 Clinical Research Department, Diagnostica Stago, Gennevilliers, France
8 Service de pneumologie, Hôpital Tenon, Hôpitaux Universitaires de l’Est Parisien, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Sorbonne Université, Paris, France

Address for correspondence Grigoris T. Gerotziafas, MD, PhD, INSERM U938 Bâtiment Kourilsky, 34 rue Crozatier, Hôpital Saint Antoine, Paris, Cedex 75012, France (e-mail: grigorios.gerotziafas@inserm.fr).

Abstract

The prospective observational cohort study COMPASS-COVID-19 aimed to develop a risk assessment model for early identification of hospitalized COVID-19 patients at risk for worsening disease. Patients with confirmed COVID-19 (n = 430) hospitalized between March 18 and April 21, 2020 were divided in derivation (n = 310) and validation (n = 120) cohorts. Two groups became evident: (1) good prognosis group (G-group) with patients hospitalized at the conventional COVID-19 ward and (2) Worsening disease group (W-group) with patients hospitalized at the conventional COVID-19 ward and (2) Worsening disease group (W-group) with patients admitted to the intensive care unit (ICU) from the emergency departments. The study end point was disease worsening (acute respiratory failure, shock, myocardial dysfunction, bacterial or viral coinfections, and acute kidney injury) requiring ICU admission. All patients were routinely evaluated for full blood count, prothrombin time, fibrinogen, D-dimers, antithrombin (AT), and protein C activity. Data from the first hospitalization day at the conventional ward or the ICU were analyzed. Cardiovascular risk factors and comorbidities were routinely registered. Obesity, hypertension, diabetes and male gender, increased fibrinogen and

Keywords

► COVID-19
► SARS-CoV-2
► disseminated intravascular coagulation
► antithrombin
► D-dimers

received May 18, 2020
accepted after revision August 13, 2020

© 2020. Thieme. All rights reserved. DOI https://doi.org/10.1055/s-0040-1716544.

ISSN 0340-6245.
COMPASS-COVID-19 Score for Disease Worsening

Gerotziafas et al.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The SARS-CoV-2 pandemic has put the health care systems worldwide under extremely high stress. COVID-19 is characterized by acute pneumonia which may progress to respiratory failure and life-threatening complications, including acute respiratory distress syndrome and multisystem organ failure with fatal outcome. COVID-19 should be regarded as a systemic disease involving multiple systems. COVID-19 is associated with excessive inflammation, platelet activation, endothelial dysfunction, blood coagulation activation, and fibrin formation. Current management of patients hospitalized in an intensive care unit (ICU) is based on supportive care and the mortality rate may be high. Blood hypercoagulability—documented by an increase in D-dimers and a decrease in antithrombin (AT)—is frequently encountered among COVID-19 patients.

Identification of patients with COVID-19 being at high risk for clinical deterioration is a challenging issue for an earlier adapted treatment and positive clinical outcome. These patients could benefit from earlier appropriate oxygen support, antithrombotic agents, and compassionate-use therapies, including antiretrovirals, anti-inflammatory drugs, immunomodulatory compounds, and convalescent plasma.

In this prospective observational study conducted at the COVID-19 center of Tenon University Hospital in Paris, we aimed to identify the most relevant clinical and hematological risk factors for worsening of COVID-19 by constructing an accurate risk assessment tool.

Methods

Participants

In the set-up of the COVID-19 center at Tenon University Hospital (APHP, Sorbonne University, Paris), we designed a prospective observational cohort study and enrolled all admitted patients in two phases: (1) between March 18 and April 5, 2020 to constitute the derivation cohort and (b) between April 6 and April 21 to constitute the validation cohort which was composed only of new patients. According to the follow-up during the course of the disease, two groups became evident: (1) good prognosis group (G-group) with patients hospitalized at the conventional COVID-19 ward. G-group patients were assessed on the first admission day. (2) Worsening disease group (W-group) included patients admitted to the ICU from the emergency departments since they presented with clinically deteriorated COVID-19. W-group patients were assessed on the first day of admission.

Definitions

All patients had laboratory-confirmed COVID-19 infection and were hospitalized either in the conventional COVID-19 ward of the medical department or in the COVID-19 ICU. A confirmed case of COVID-19 was defined by a positive result on a reverse transcriptase polymerase chain reaction (rt-PCR) assay from a specimen collected on a nasopharyngeal swab and imaging of well-documented pneumonia according to the Fleischner Society consensus statement. Pregnant women, patients receiving anticoagulant treatment, and patients with cytopenia due to current anticancer treatment were excluded. All patients hospitalized in the conventional medical department or in the ICU routinely received thromboprophylaxis with body-weight-adapted enoxaparin. All clinical and biological data were cross-checked with the electronic files using the ORBIS software (Agfa Healthcare) and the GLIMS laboratory information system (MIPS France) of Tenon University Hospital.

Hematological Parameters

In the set-up of the COVID-19 center at Tenon University Hospital, all patients were evaluated daily with a “COAG-COVID” panel composed of tests of various parameters: prothrombin time (PT), fibrinogen, D-dimers, AT activity, protein C (PC) activity, and platelet count. These tests are predictors of compensated disseminated intravascular coagulation (DIC) according to the International Society on Thrombosis and Haemostasis (ISTH) score (compensated DIC-ISTH). In addition to platelets, all other hemogram

D-dimers, thrombocytopenia, AT deficiency, lymphopenia, and an International Society on Thrombosis and Haemostasis (ISTH) score for compensated disseminated intravascular coagulation score (cDIC-ISTH) ≥5 were significant risk factors for worsening disease. The COMPASS-COVID-19 score was derived from multivariate analyses and includes obesity, gender, hemoglobin, lymphocyte, and the cDIC-ISTH score (including platelet count, prothrombin time, D-dimers, AT, and protein C levels). The score has a very good discriminating capacity to stratify patients at high and low risk for worsening disease, with an area under the receiver operating characteristic curve value of 0.77, a sensitivity of 81%, and a specificity of 60%. Application of the COMPASS-COVID-19 score at the validation cohort showed 96% sensitivity. The COMPASS-COVID-19 score is an accurate clinical decision-making tool for an easy identification of COVID-19 patients being at high risk for disease worsening.
parameters were also analyzed. Blood samples were routine-
ly obtained via atraumatic antecubital venipuncture or from
the central vein catheter. For coagulation tests, blood was
collected in 3.5 mL Vacutette tubes containing 0.109 mol/L
trisodium citrate—one volume trisodium citrate to nine
volumes of blood—(Greiner Bio-One, Courtaboeuf, France)
centrifuged at 2,000 g for 20 minutes at room tempera-
ture for platelet-poor plasma (PPP) preparation. Within
30 minutes upon preparation, PPP samples were assessed
for blood coagulation tests on the STA-R Max instrument
from Stago (Asnières-sur-Seine, France) according to manu-
ufacturer’s instructions. PT was assessed with chronometric
 assay using the STA-Neoptimal reagent (ref: 01165). Fibrin-
ogen was measured with the Clauss-based chronometric
 assay using the Liquid FIB reagent (ref: 00673). D-dimers
 were measured with turbidimetric assay using the STA-
Liatest D-Di Plus reagent (ref: 00662). AT and PC activities
 were measured with the amidolytic assays STACHROM ATIII
(ref: 00596, from Stago, Asnières, France) and BIOPHEN PC
(LRT) (ref: 221205, from Hyphen BioMed, Neuville-sur-Oise,
France), respectively. Hemogram parameters and platelet
 count were assessed on whole blood collected in 4 mL
EDTA BD Vacutainer tubes (Becton-Dickinson, Le Pont-de-
Claix, France) using the Sysmex XN-3100 instrument (Paris,
France). All hematological tests were performed at the ISO
certified Central Haematological Laboratory of Thrombosis
Center at Tenon University Hospital in Paris.

Ethics
The protocol of the study was in accordance with the com-
mitment of the Helsinki Declaration and all patients
received care according to the recommended institutional
practice during the COVID-19 pandemic. All hematological
tests were performed in the frame of routine monitoring of
patients as decided by the local institutional board for the
management of the COVID-19 patients. This study was
approved by the institutional ethics board. The observational
design of the study did not impose the need for getting
informed consent from individual patients.

Outcomes
The study end point was disease worsening requiring ICU
admission. Disease worsening requiring ICU admission was
defined according to the following criteria, acute hypox-
pemic respiratory failure judged on the basis of increased need
for oxygen supply more than 9 L/minute or clinical signs of
respiratory insufficiency (shortness of breath, respiratory
rate ≥ 30 times/min), arterial oxygen saturation (resting
status) ≤ 92%, shock, myocardial dysfunction, bacterial or
viral coinfections, and acute kidney injury.

Statistical Analysis
Data from the first hospitalization day for the G-group and
the first day on ICU admission for the W-group were ana-
lyzed. The normal ranges of the COAG-COVID panel of tests
have been established by the Thrombosis Center of Tenon
University Hospital, according to the requirements for the
good quality of laboratory practice. The number of patients
included in the derivation cohort was calculated according to
the following assumptions: (1) the model had to be con-
structed according to the rule of thumb, the so-called events
per variable (EPV) 10–1 and (2) less than 10 variables should
be included in the model in order for it to be easy to use.24–26
Thus, at least 70 patients were required to be enrolled in the
W-group to respond to the above conditions accommodating
at maximum a seven-variable model. Continuous variables
were summarized as median (interquartile range) and cate-
gorical variables as frequency and percentage. Because of the
declaration from normality (as evidenced by the Shapiro-Wilk
test), the comparison of continuous variables between patients
with worsening disease and those hospitalized at the
conventional ward was performed using the Mann–
Whitney–Wilcoxon test for independent samples. Regarding
the associations between disease worsening and hematolog-
ical parameters at baseline, the latter were converted to
binary variables on the basis of laboratory normal values.
Univariate and multivariate logistic regression analyses
were performed to evaluate the independent associations be-
tween disease worsening (dependent variable) and the
examined hematological parameters (independent varia-
tes) as binary variables: 1 (yes) or 0 (no). In the multivariate
approach aiming to create a score predicting disease wors-
ening, stepwise selection of variables was performed on the
basis of the Akaike information criterion (AIC). To obtain
the score, β coefficients of the final logistic regression model
were rounded and rescaled from the logodds ratios (ORs).
Receiver operating characteristic (ROC) curve analysis was
subsequently undertaken; the area under the ROC curve (AUC)
was estimated to evaluate model discrimination performance.
The optimal cut-off level was identified through the
maximization of unweighted Youden’s index by calculating
sensitivity, specificity, positive predictive value, (PPV) and
negative predictive value (NPV). Calibration of the
model was examined with the Hosmer–Lemeshow test and
the respective plot of expected versus observed probability
was constructed, for the G-group and W-group. The level of
statistical significance was set at 0.05. Data were analyzed
using the STATA/SE version 13 statistical software (Stata
Corp., College Station, Texas, United States).

Results
Derivation Cohort
Among 330 patients with confirmed COVID-19 disease, 310
patients who responded to the inclusion criteria were
enrolled in the derivation cohort. The remaining 20 patients
were excluded because of pregnancy (n = 5), pancytopenia
due to chemotherapy (n = 6), or oral anticoagulant treatment
with direct oral anticoagulants or vitamin K antagonists
(n = 9). The G-group included 208 patients. The W-group
consisted of 102 patients; 87% of these patients were admit-
ted to the ICU directly from the emergency department.
Males were 113 out of 208 patients in the G-group and 76 out
of 102 patients in the W-group. Age ranged from 19 to
95 years in the G-group and from 30 to 93 years in the
W-group.
Validation Cohort

The validation cohort included 120 patients stratified in the G-group (n = 89) and the W-group (n = 31); 90% of patients in the W-group were admitted to the ICU directly from the emergency department. Males were 58 out of 89 patients in the G-group and 25 out of 31 patients in the W-group. Age ranged from 21 to 95 years in the G-group and from 30 to 98 years in the W-group.

The derivation and validation cohorts were comparable regarding the age and sex distribution in each one of the two groups (G- and W-groups). Detailed epidemiological, clinical, and hematological characteristics of the derivation and validation cohorts are shown in Table 1. Very few patients received compassionate or antiviral treatments. Among the G-group patients, five received treatment with lopinavir-ritonavir, one was treated with remdesivir, and another one received hydroxychloroquine. Among the patients in W-group, only four received lopinavir-ritonavir. Upon hospitalization all patients received thromboprophylaxis with low-molecular-weight heparin (LMWH; enoxaparin). The dose of enoxaparin was adapted according to the evolution of D-dimers and the levels of the anti-Xa activity. Moreover, patients with AT deficiency (AT activity lower than 50%) upon admission or during hospitalization received treatment with AT concentrate according to the protocol published elsewhere.14

In both cohorts, there were no missing values of the COAG-COVID biomarkers and clinical predictors. A follow-up of at least 12 days was predicted. However, the follow-up for the most recently enrolled patients was shorter because France was still at the peak of COVID-19 public health crisis when the database closed and data analysis was performed. Male gender representation was significantly higher in the W-group as compared with the G-group. Obesity (body mass index [BMI] > 30), arterial hypertension, and diabetes were significantly more frequent in the W-group as compared with the G-group. Chronic renal insufficiency and cardiovascular disease were more frequent in the W-group as compared with the G-group. Interestingly, very few patients in both groups were active smokers. Data are summarized in Table 1.

Derivation of the COMPASS-COVID-19 Risk Assessment Model

In the derivation cohort, compensated DIC was diagnosed in 8.2% of patients in the G-group and in 28.2% of patients in the W-group (p = 0.001; Table 1). Compared with the G-group, the patients in the W-group had significantly lower levels of AT, PC, platelets, lymphocyte, monocyte, and red blood cell counts, as well as hemoglobin and hematocrit. They had significantly higher levels of fibrinogen, D-dimers, white blood cells, and neutrophil counts. No difference was noted in eosinophil and basophil counts. Data are summarized in Table 2.

Table 1 Demographic data, cardiovascular risk factors, comorbidities, and DIC rates in hospitalized COVID-19 patient enrolled in the derivation cohort hospitalized in conventional ward (G-group) or presenting worsening disease (W-group)

<table>
<thead>
<tr>
<th></th>
<th>Derivation cohort</th>
<th>Validation cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-group</td>
<td>W-group</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender male</td>
<td>54.3%</td>
<td>74.5%</td>
</tr>
<tr>
<td>(n = 208)</td>
<td>(n = 102)</td>
<td></td>
</tr>
<tr>
<td>Age (y)a</td>
<td>19–95</td>
<td>30–93</td>
</tr>
<tr>
<td>(median: 66)</td>
<td>(median: 61)</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular risk factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>39.5%</td>
<td>64.6%</td>
</tr>
<tr>
<td>(n = 208)</td>
<td>(n = 102)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>15.8%</td>
<td>33.3%</td>
</tr>
<tr>
<td>(n = 208)</td>
<td>(n = 102)</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>7.8%</td>
<td>31.5%</td>
</tr>
<tr>
<td>(n = 16/208)</td>
<td>(n = 32/102)</td>
<td></td>
</tr>
<tr>
<td>Active smoking</td>
<td>4.4%</td>
<td>3.9%</td>
</tr>
<tr>
<td>(n = 9/208)</td>
<td>(n = 4/102)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>7.3%</td>
<td>18.8%</td>
</tr>
<tr>
<td>(n = 17/208)</td>
<td>(n = 19/102)</td>
<td></td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>8.3%</td>
<td>10.7%</td>
</tr>
<tr>
<td>(n = 17/208)</td>
<td>(n = 11/102)</td>
<td></td>
</tr>
<tr>
<td>Active cancer</td>
<td>12.6%</td>
<td>1.9%</td>
</tr>
<tr>
<td>(n = 26/208)</td>
<td>(n = 2/102)</td>
<td></td>
</tr>
<tr>
<td>End-stage renal disease</td>
<td>3.9%</td>
<td>8.8%</td>
</tr>
<tr>
<td>(n = 8/208)</td>
<td>(n = 9/102)</td>
<td></td>
</tr>
<tr>
<td>Coagulopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensated DIC (DIC-ISTH score ≥5)</td>
<td>8.2%</td>
<td>28.4%</td>
</tr>
<tr>
<td>(n = 17/208)</td>
<td>(n = 29/102)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; DIC, disseminated intravascular coagulation; ISTH, International Society on Thrombosis and Haemostasis; VTE, venous thromboembolism.

aValues for age are in the minimum and maximum range.
Table 2 Variations of hematological parameters in the conventional group (G-group) and worsening disease group (W-group) of COVID-19 patients

<table>
<thead>
<tr>
<th></th>
<th>Derivation cohort</th>
<th>Validation cohort</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal range</td>
<td>G-group (n = 208)</td>
<td>W-group (n = 102)</td>
<td>p-Value</td>
<td>G-group (n = 89)</td>
<td>W-group (n = 31)</td>
<td>p-Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood coagulation parameters</td>
<td></td>
</tr>
<tr>
<td>PT (s)</td>
<td><13.6</td>
<td>14.0 (13.3–14.8)</td>
<td>14.6 (13.9–15.6)</td>
<td>0.0002</td>
<td>14.6 (13.5–15.7)</td>
<td>14.9 (13.6–16.1)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>1.8–4.0</td>
<td>5.9 (4.7–7.0)</td>
<td>6.9 (6.0–7.6)</td>
<td><0.0001</td>
<td>6.1 (5.1–7.2)</td>
<td>7.1 (6.1–7.8)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-dimers (ng/mL)</td>
<td><500 for age under 60 years</td>
<td>1,171 (608–2,136)</td>
<td>1,881 (1,074–3,662)</td>
<td><0.0001</td>
<td>2,434 (923–3,082)</td>
<td>2,599 (1,200–3,600)</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antithrombin (%)</td>
<td>80–120</td>
<td>96 (84–107)</td>
<td>88 (79–99)</td>
<td>0.0003</td>
<td>95 (83–107)</td>
<td>90 (80–100)</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein C (%)</td>
<td>70–130</td>
<td>97 (79–113)</td>
<td>88 (71–100)</td>
<td>0.0002</td>
<td>101 (81–115)</td>
<td>101 (80–116)</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood cell parameters</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>12.0–16.0</td>
<td>12.6 (11.3–13.7)</td>
<td>12.1 (10.4–13.4)</td>
<td>0.019</td>
<td>12.4 (11.2–13.5)</td>
<td>10.5 (8.3–11.8)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>35.0–47.0</td>
<td>37.1 (34.2–40.3)</td>
<td>35.4 (31.1–38.8)</td>
<td>0.006</td>
<td>38.1 (35.1–41.0)</td>
<td>28.3 (28.3–36.2)</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red blood cells (× 10⁹/L)</td>
<td>4.0–5.2</td>
<td>4.3 (4.0–4.8)</td>
<td>4.2 (3.7–4.6)</td>
<td>0.039</td>
<td>4.5 (4.2–5.1)</td>
<td>3.9 (3.5–4.3)</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets (× 10⁹/L)</td>
<td>150–400</td>
<td>240 (179–315)</td>
<td>211 (151–257)</td>
<td>0.0003</td>
<td>272 (182–350)</td>
<td>276 (200–340)</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood cells (× 10⁹/L)</td>
<td>4.0–10.0</td>
<td>6.8 (5.1–8.7)</td>
<td>7.7 (6.1–10.5)</td>
<td>0.013</td>
<td>6.5 (5.0–8.6)</td>
<td>8.1 (6.9–11.2)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils (× 10⁹/L)</td>
<td>1.5–7.0</td>
<td>4.9 (3.4–6.6)</td>
<td>6.2 (4.8–8.9)</td>
<td>0.0001</td>
<td>4.7 (3.2–6.4)</td>
<td>6.5 (4.9–9.1)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytes (× 10⁹/L)</td>
<td>1.5–4.0</td>
<td>1.04 (0.74–1.52)</td>
<td>0.76 (0.53–1.10)</td>
<td><0.0001</td>
<td>1.26 (1.12–1.72)</td>
<td>0.97 (0.52–1.32)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocytes (× 10⁹/L)</td>
<td>0.1–1.0</td>
<td>0.49 (0.32–0.68)</td>
<td>0.29 (0.19–0.49)</td>
<td><0.0001</td>
<td>0.50 (0.33–0.69)</td>
<td>0.30 (0.18–0.51)</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils (× 10⁹/L)</td>
<td>0.03–0.7</td>
<td>0.02 (0–0.08)</td>
<td>0.01 (0–0.04)</td>
<td>0.004</td>
<td>0.02 (0–0.09)</td>
<td>0.01 (0–0.4)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basophils (× 10⁹/L)</td>
<td><0.1</td>
<td>0.01 (0.01–0.02)</td>
<td>0.01 (0–0.02)</td>
<td>0.065</td>
<td>0.01 (0.01–0.02)</td>
<td>0.01 (0–0.02)</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: PT, prothrombin time.
Clinical Predictors for Disease Worsening

The univariate analysis showed that the risk for worsening disease was increased in men compared with women: OR = 2.43, 95% confidence interval (CI): 1.44 to 4.10. Among clinical predictors, obesity (OR = 5.44, 95% CI: 2.77–10.67), hypertension (OR = 2.79, 95% CI: 1.69–4.62), and diabetes (OR = 2.13, 95% CI: 1.23–3.69) were significantly related with an increased risk for disease worsening. Surprisingly current smoking was not a significant risk factor for clinical deterioration of COVID-19 patients. Among comorbidities, chronic kidney disease (OR = 2.92, 95% CI: 1.40–6.09) was a risk factor for disease worsening (see Table 3).

Table 3 Univariate analysis of COVID-19 patients determining the risk factors associated with worsening disease

<table>
<thead>
<tr>
<th>Examined parameters</th>
<th>Compared categories</th>
<th>OR (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male vs. female</td>
<td>2.43 (1.44–4.10)</td>
<td>0.001</td>
</tr>
<tr>
<td>Age (y)</td>
<td>≥70 vs. <70</td>
<td>0.48 (0.28–0.81)</td>
<td>0.006</td>
</tr>
<tr>
<td>Cardiovascular risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>Yes vs. no</td>
<td>5.44 (2.77–10.67)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Yes vs. no</td>
<td>2.79 (1.69–4.62)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Yes vs. no</td>
<td>2.13 (1.23–3.69)</td>
<td>0.007</td>
</tr>
<tr>
<td>Current smoking</td>
<td>Yes vs. no</td>
<td>0.71 (0.19–2.68)</td>
<td>0.614</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>Yes vs. no</td>
<td>2.92 (1.40–6.09)</td>
<td>0.004</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>Yes vs. no</td>
<td>1.29 (0.57–2.92)</td>
<td>0.549</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensated DIC ISTH score ≥ 5a</td>
<td>Yes vs. no</td>
<td>4.58 (2.09–10.07)</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood coagulation parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT (s) Elevated >3 seconds compared with the normal limit versus not</td>
<td>2.43 (1.15–5.13)</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>>4 vs. ≤4</td>
<td>9.50 (2.23–40.54)</td>
<td>0.002</td>
</tr>
<tr>
<td>D-dimers (ng/mL)</td>
<td>Elevated vs. normal in age-specific normb</td>
<td>7.65 (2.67–21.87)</td>
<td><0.001</td>
</tr>
<tr>
<td>Protein C (%)</td>
<td><70 vs. ≥70</td>
<td>2.51 (1.30–4.83)</td>
<td>0.006</td>
</tr>
<tr>
<td>Antithrombin (%)</td>
<td><80 vs. ≥80</td>
<td>2.13 (1.18–3.85)</td>
<td>0.012</td>
</tr>
<tr>
<td>Blood cell parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td><11 vs. ≥11</td>
<td>2.09 (1.18–3.69)</td>
<td>0.011</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td><40 vs. ≥40</td>
<td>1.58 (0.86–2.89)</td>
<td>0.138</td>
</tr>
<tr>
<td>Red blood cells (x10^9/L)</td>
<td><4 vs. ≥4</td>
<td>1.50 (0.89–2.52)</td>
<td>0.128</td>
</tr>
<tr>
<td>Platelets (x10^9/L)</td>
<td><100 vs. ≥100</td>
<td>7.60 (1.55–37.35)</td>
<td>0.012</td>
</tr>
<tr>
<td>Platelets (x10^9/L)</td>
<td><150 vs. ≥150</td>
<td>3.54 (1.77–7.10)</td>
<td><0.001</td>
</tr>
<tr>
<td>White blood cells (x10^9/L)</td>
<td>>10 vs. ≤10</td>
<td>1.86 (1.04–3.33)</td>
<td>0.036</td>
</tr>
<tr>
<td>Neutrophils (x10^9/L)</td>
<td>>7 vs. ≤7</td>
<td>2.43 (1.42–4.18)</td>
<td>0.001</td>
</tr>
<tr>
<td>Lymphocytes (x10^9/L)</td>
<td><1.5 vs. ≥1.5</td>
<td>3.37 (1.58–7.21)</td>
<td>0.002</td>
</tr>
<tr>
<td>Lymphocytes (x10^9/L)</td>
<td><1 vs. ≥1</td>
<td>2.49 (1.48–4.20)</td>
<td>0.001</td>
</tr>
<tr>
<td>Monocytes (x10^9/L)</td>
<td>>1 vs. ≤1</td>
<td>0.84 (0.35–1.99)</td>
<td>0.687</td>
</tr>
<tr>
<td>Eosinophils (x10^9/L)</td>
<td>>0.07 vs. ≤0.07</td>
<td>0.56 (0.30–1.03)</td>
<td>0.060</td>
</tr>
<tr>
<td>Basophils (x10^9/L)</td>
<td>>0.01 vs. ≤0.01</td>
<td>0.69 (0.41–1.16)</td>
<td>0.160</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; DIC, disseminated intravascular coagulation; ISTH, International Society on Thrombosis and Haemostasis; PT, prothrombin time.

Note: Values are odds ratio and 95% confidence intervals.
aAssuming COVID-19 is associated with DIC, therefore a +2 term was added for all participants.
bAge-adapted threshold for D-dimers: >500 for patients under 60 years, >600 for age 60–69, >700 for age 70–79, >800 for age 80–89, and >900 for age 90–99.
Hematological Predictors for Disease Worsening
Increase of fibrinogen (OR = 9.50, 95% CI: 2.23–40.54) and D-dimers levels (OR = 7.65, 95% CI: 2.67–21.87), a platelet count lower than 100 × 10^9/L (OR = 7.60, 95% CI: 1.55–37.35), and a positive compensated DIC-ISTH score (OR = 4.58, 95% CI: 2.09–10.07) were major determinants of disease worsening risk. Deficiency of AT activity (OR = 2.13, 95% CI: 1.18–3.85), PT prolongation (OR = 2.43, 95% CI: 1.15–5.13), leukocytosis (OR = 1.86, 95% CI: 1.04–3.33), and lymphopenia with lymphocyte count lower than 1.5 × 10^9/L (OR = 3.37, CI: 1.58–7.21) were significant risk factors for worsening disease. (►Table 3).

COMPASS-COVID-19 Score
A multivariate logistic regression analysis led to the derivation of a risk assessment model (RAM) for the identification of COVID-19 patients at high risk for worsening disease. The multivariate analysis retained obesity (BMI ≥ 30; OR = 6.56, 95% CI: 2.98–14.46; p < 0.001), male gender (OR = 2.59, 95% CI: 1.29–5.21; p = 0.007), compensated DIC-ISTH score ≥ 5 (OR = 2.58, 95% CI: 1.07–6.21; p = 0.034), lymphocyte count < 1 × 10^9/L (OR = 2.21, 95% CI: 1.17–4.19; p = 0.015), and Hb < 11 g/dL (OR = 2.25, 95% CI: 1.13–4.48; p = 0.021) as significant predictors of worsening disease. Multivariate logistic regression analysis led to the following equation:

\[
\text{log (odds for worsening disease)} = -2.6 + 1.9 \times \text{(obesity)} + 1.0 \times \text{(male gender)} + 0.9 \times \text{(DIC-ISTH score ≥ 5)} + 0.8 \times \text{(lymphocytes} < 1 \times 10^9/\text{L}) + 0.8 \times \text{(Hb} < 11 \text{g/dL}).
\]

The COMPASS-COVID-19 RAM was formulated by calculating an integer numeric value for each predictor according to the value of its multiple regression coefficients (►Table 4). The score ranged between 0 and 54 points with a cut-off at 18 points and stratified COVID-19 patients into high and low risk for worsening disease. The COMPASS-COVID-19 score calculated for COVID-19 patients into high and low risk was 81% sensitivity, 60% specificity, 88% NPV, and 47% PPV. According to the Hosmer–Lemeshow test, a p = 0.797 showed that the score was well calibrated. Plotting the expected worsening cases, according to the score, against the observed worsening cases, as well as the expected against

<table>
<thead>
<tr>
<th>Table 4</th>
<th>COMPASS-COVID-19 RAM score for the evaluation of the risk for worsening disease in COVID-19 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors for risk of worsening disease</td>
<td>Score</td>
</tr>
<tr>
<td>Obesity (BMI > 30)</td>
<td>9</td>
</tr>
<tr>
<td>Male gender</td>
<td>10</td>
</tr>
<tr>
<td>Compensated DIC-ISTH score ≥ 5</td>
<td>9</td>
</tr>
<tr>
<td>Confirmed COVID-19</td>
<td>1</td>
</tr>
<tr>
<td>Thrombocytopenia (platelets < 100,000/μL)</td>
<td>1</td>
</tr>
<tr>
<td>Prothrombin time prolongation (> control + 3 s):</td>
<td>1</td>
</tr>
<tr>
<td>D-dimer increase (>500 for age <60 y; >600 ng/mL for age 60–69 y; >700 ng/mL for age 70–79 y; >800 ng/mL for age 80–99 y; >900 ng/mL for age 90–99 y)</td>
<td>1</td>
</tr>
<tr>
<td>Antithrombin decrease (< lower normal limit established by the laboratory)</td>
<td>1</td>
</tr>
<tr>
<td>Protein C decrease (< lower normal limit established by the laboratory)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>18: high risk ≤18: low risk</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; DIC, disseminated intravascular coagulation; ISTH, International Society on Thrombosis and Haemostasis.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Simplified profile of patients with COVID-19 at high or low risk for disease worsening according to the COMPASS-COVID-19 risk assessment model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with COVID-19 at high risk for disease worsening (COMPASS-COVID-19 score ≥ 18)</td>
<td>Patients with COVID-19 at low risk for disease worsening (COMPASS-COVID-19 score < 18)</td>
</tr>
<tr>
<td>Obese (BMI > 30), any sex, any examined comorbidities</td>
<td>Nonobese male with none, one, or two of: compensated DIC-ISTH ≥ 5, lymphopenia, anemiaa</td>
</tr>
<tr>
<td>Nonobese male with one or more of: compensated DIC-ISTH ≥ 5, lymphopenia, anemiaa</td>
<td>Nonobese female with three of: compensated DIC-ISTH ≥ 5, lymphopenia and anemiaa</td>
</tr>
<tr>
<td>Nonobese female with all three of: compensated DIC-ISTH ≥ 5, lymphopenia and anemiaa</td>
<td>Nonobese female without none, one, or two of: compensated DIC-ISTH ≥ 5, lymphopenia, anemia</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; DIC, disseminated intravascular coagulation; ISTH, International Society on Thrombosis and Haemostasis.

Qualitative Characteristics of the COMPASS-COVID-19 Score
The COMPASS-COVID-19 score at the cut-off value for high-risk level (≥18) had 81% sensitivity, 60% specificity, 88% NPV, and 47% PPV. According to the Hosmer–Lemeshow test, a p = 0.797 showed that the score was well calibrated. Plotting the expected worsening cases, according to the score, against the observed worsening cases, as well as the expected against...
the observed number of patients whose condition did not worsen, confirmed the good calibration of the score with a Pearson’s $r^2 = 0.965$ for worsening cases and $r^2 = 0.992$ for nonworsening cases (-Fig. 1, Frame A). The ROC curve was plotted to evaluate the discrimination ability of the score between the high-risk and low-risk populations for disease deterioration. The AUC was equal to 0.77, indicating a very good discrimination capacity (-Fig. 1, Frame B). The model with the score minimized the AIC (AIC = 1.033) compared with all other examined logistic regression models, including a univariate model based on the DIC-ISTH score (AIC = 1.191), denoting the substantial improvement through the addition of parameters such as obesity, gender, lymphocyte count, and hemoglobin levels, adopted in the COMPASS-COVID-19 score.

Validation of the COMPASS-COVID-19 Score

Patients included in the validation cohort were prospectively assessed with the COMPASS-COVID-19 score. The score at the cut-off value of 18 points identified as high risk for disease worsening, 90% of patients at the W-group and 38% of the patients at the G-group. The sensitivity and the specificity of the score were 94 and 58% respectively and the NPV and PPVs were 96 and 45%, respectively.

Discussion

Development of prognostic tools and biomarkers for the prediction of COVID-19 trajectory from the time of symptom onset is a difficult task needing urgent response. To anticipate this challenge, we performed this prospective observational cohort study which led to the derivation and validation of the COMPASS-COVID-19 RAM.

We showed that in COVID-19 patients disease worsening is related to the presence of cardiovascular risk factors (i.e., arterial hypertension, diabetes, and obesity) and blood hypercoagulability. The present study showed for the first time that compensated DIC, diagnosed according to the ISTH criteria, was already present in 8 and 28% of COVID-19 patients when admitted at the medical conventional ward and the ICU, respectively. Thus, compensated DIC is an independent risk factor for disease worsening. This figure completes the substantial role of blood coagulation activation and DIC in the poor prognosis of COVID-19 patients. Consequently, our data justify the monitoring of hypercoagulability biomarkers and the need for an early application of antithrombotic treatment in COVID-19 patients. Moreover, close monitoring of AT levels—the most potent heparin cofactor—and its administration in the case of deficiency is mandatory to preserve the treatment efficacy of LMWH. In fact, intravenous administration of AT concentrates could be an effective supportive strategy for the management of DIC in patients with severe COVID-19.

Our study led to the derivation of the COMPASS-COVID-19 score which includes the following easily assessable predictors: presence of obesity (BMI ≥ 30), gender, hemoglobin, lymphocyte count, platelet count, PT, D-dimers, AT, and PC activity. The COMPASS-COVID-19 score accurately identified COVID-19 patients at high risk for disease worsening. The hematological predictors of the score can be easily measured in nonspecialized hematological laboratories. This score is feasible in all health care structures equipped with a routine hematological laboratory. At the cut-off of 18 points, the score has a very good discriminating capacity to stratify patients at high and low risks for disease aggravation, with an AUC value of 0.77, a sensitivity of 81%, and a specificity of 60%. These qualitative characteristics together with the feasibility of measuring routine hematological parameters designate the COMPASS-COVID-19 score as a useful clinical tool, promptly identifying at least 80% of patients in the medical ward as being at high risk for disease worsening and as requiring an optimized targeted management. The COMPASS-COVID-19 score...
The COMPASS–COVID-19 score for the prediction of disease worsening in hospitalized patients was developed according to the TRIPOD reporting guidelines. Data analysis was performed taking into consideration the major conclusions of the systematic review and critical appraisal of prediction models for diagnosis and prognosis of COVID-19 infection published by Wynants et al. The prospective design of our study is a strength for the derivation of the new RAM since all patients were tested with the COAG–COVID panel which provided information on hematological alterations together with specific evaluation of biomarkers of hypercoagulability. Moreover, this design allowed the evaluation of the presence of compensated DIC on the first hospitalization day of patients either at the conventional COVID-19 medical ward or at the ICU. The COMPASS–COVID-19 score is not applicable in patients receiving anticoagulant treatment with direct oral anticoagulants or vitamin K antagonists because these antithrombotic agents introduce prolongation of PT. Moreover, treatment with direct oral anticoagulants (DOACs) induces a variable degree of overestimation of PC activity when a clotting based assay is used. However, the low number of patients with COVID-19 on anticoagulant treatment admitted in our center did not allow the evaluation of the above-mentioned conditions on the accuracy of the COMPASS–COVID-19 score. This is an issue that has to be evaluated in the external validation of the score.

Time to event analysis is considered to be the optimal methodology for the elaboration of predictive scores allowing for administrative censoring in a competing risk framework. However, this strategy was practically unfeasible during the actual phase of the pandemic, which had an extreme pressure on our hospital and on the availability of ICU beds in the city of Paris. For this reason, the cohort design was selected.

External validation is the optimal strategy to control the accuracy of predictive models. However, in the actual phase of the pandemic, this validation strategy is practically impossible to apply. For this reason, we set up an independent validation cohort of patients selected from new patients hospitalized at the COVID-16 center at Tenon University hospital between April 6 and April 21. The assessment of patients enrolled in the validation cohort showed that the COMPASS–COVID-19 score accurately predicted patients at high risk for disease worsening with a very high sensitivity reaching up to 96%. An independent multicenter external validation of the COMPASS–COVID-19 score is ongoing.

Demographics and epidemiological characteristics of the patients enrolled in our study were similar to those described in recently published studies from United States and China. Moreover, the low frequency of active smokers found in our cohorts was also reported in recent studies. These similarities further support that patients enrolled in our cohorts are representative of those suffering from COVID-19 in the community and support the generalizability of our findings. Moreover, very limited exclusion criteria were applied, yielding our cohort representative of the population of COVID-19 patients requiring hospitalization.

These characteristics of our study allow implementation of the COMPASS–COVID-19 score across different settings and populations.

We aimed to derive an original, simple, and easy-to-use RAM based on clinical predictors and concrete hematological parameters closely related to mechanisms implicated in COVID-19 pathogenesis. Indeed, available evidence so far has reinforced the importance of blood coagulation, endothelial cell activation, white blood cell alterations, and hypoxia in the deterioration of COVID-19 patients. An enhanced inflammatory reaction with associated cytokine storm has a central role in COVID-19 patients’ worsening. This has also been extensively described in the analysis of biochemical biomarkers of inflammation such as ferritin. Nevertheless, the inflammatory process is reflected upon some of the hematological parameters studied, such as fibrinogen levels, platelets, and white blood cell counts. To the best of our knowledge, two studies have been published to date aiming to elaborate a prediction tool for disease severity in patients hospitalized with COVID-19 and are based on the evaluation of biochemical biomarkers. Both studies included very limited numbers of patients, which hardly allowed (if so) sufficient statistical power to identify score predictors by applying the rule-of-thumb (the so-called EPV 10–1) method for predictive score derivation. In contrast, the COMPASS–COVID-19 score derived from a robust cohort with a sufficient number of patients in the two groups allowing accurate identification of the most pertinent biological and clinical predictors by following the above-mentioned rule.

Despite its original nature, this study bears some limitations. First, in our approach, an unweighted Youden’s index was used to establish the optimal cut-off in the score, allocating equal importance to sensitivity and specificity, and yielding a sensitivity of 81% and a specificity of 60%; alternative, weighted approaches prioritizing for instance sensitivity over specificity could lead to other cut-off values. Another limitation pertains to the number of patients and the single-center design of the study as well as the short admission time, which were imposed by the urgent character of the SARS-CoV-2 epidemic.

Regarding the external validity and generalizability of findings, it should be underlined that the COMPASS–COVID-19 score is applicable in patients receiving heparin treatment since all patients hospitalized in a conventional medical department or in an ICU routinely receive thromboprophylaxis with body weight-adapted enoxaparin as in our setting. At the actual phase of the score development, the score is not applicable to pregnant women, patients on anticoagulant treatment with VKA or DOAC, and patients with cytopenia due to current anticancer treatment, since these groups of patients were excluded from this study. The applicability of the score on these special groups of patients will be explored in the forthcoming studies.

In conclusion, the present study provides an accurate RAM for early identification of patients with COVID-19 being at high risk of disease worsening that responds to the criteria established by the TRIPOD guidelines. Contextualized application of the COMPASS–COVID-19 score will provide a useful...
clinical decision-making tool for earlier and targeted application of treatments including antithrombotic agents. As stated by Wang et al in a recently published clinical trial on the efficacy and safety of remdesivir, earlier administration of antiviral drugs might be a strategy for successful phase III trials. The COMPASS-COVID-19 score will be a helpful tool for the identification of patients eligible for phase III trials. The COMPASS-COVID-19 score is based on the presence of pertinent clinical risk factors such as obesity and male gender and also on simple, easy-to-measure hematological and blood coagulation biomarkers, and it can be applied at any level of the health care system. Implementation of the COMPASS-COVID-19 score will allow an easy and rapid identification of a great majority of COVID-19 patients at risk for disease worsening and who may shortly require ICU admission.

What is known about this topic?
- Development of prognostic tools for the prediction of COVID-19 trajectory from the time of symptom onset is recommended by expert consensus.

What does this paper add?
- The COMPASS-COVID-19 score derived from a prospective study is composed of easily assessable clinical and hematological predictors.
- The COMPASS-COVID-19 score has high sensitivity (81%) for the identification of hospitalized patients at high risk of disease worsening.

References
12 Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;323(18):1775–1776

Conflict of Interest
None declared.

Data Sharing
After approval from the legal authorities of the Assistance Publique-Hôpitaux de Paris (APHP), data can be shared—after contacting the corresponding author (grigorios.gerotziafas@inserm.fr)—with qualifying researchers who submit a proposal with a valuable research question. A contract should be signed.

Authors’ Contributions
G.T.G. as principal investigator has made substantial contributions to the conception and design of the study and analysis and interpretation of the data, wrote the manuscript and has given the final approval of the version to be published, agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. T.N.S. has made substantial contribution by doing the statistical plan and the statistical analysis. G.V. has made substantial contribution in the enrolment of the patients and participated in the design of the study. L.L. has made substantial contribution in the enrolment of the patients and critically revised the manuscript. M.F. has made substantial contribution in data acquisition, data interpretation, and critical revision of the manuscript. A.E. participated in the enrollment of the patients and data acquisition. M.T. participated in the enrollment of the patients and data acquisition. P.V. participated in the critical revision and editing of the manuscript. L.P. participated in the critical revision and editing of the manuscript. T.P. participated in the statistical analysis. E.T. critically revised the manuscript. M.-A.D. gave valuable suggestions for data analysis and critically revised the manuscript. A.P., J.C., and G.P. have made substantial contribution in the enrollment of the patients and critically revised the manuscript. M.F. made substantial contribution to the design of the study, the interpretation of the data, and critically revised the manuscript. I.E. critically revised the manuscript.
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and

1787–1799

with COVID-19 with convalescent plasma. JAMA 2020;323(16):
1582–1589

Alexander PE, Debono VB, Mammen MJ. COVID-19 coronavirus
research has overall low methodological quality thus far: case in
point for chloroquine/hydroxychloroquine. J Clin Epidemiol 2020;
123:120–126

Baden LR, Rubin EJ. Covid-19: the search for effective therapy. N

Rubin GD, Ryerson CJ, Haramati LB, et al. The role of chest imaging
in patient management during the COVID-19 Pandemic: a multi-
national consensus statement from the Fleischner Society. Radi-
ology 2020;296(01):137–180

Taylor FB, Toh CH, Hoots WK, Wada H, Levi M. Scientific subcommit-
tee on disseminated intravascular coagulation (DIC) of the Inter-
national Society on Thrombosis and Haemostasis (ISTH). Towards
definition, clinical and laboratory criteria, and a scoring system for
disseminated intravascular coagulation. Thromb Haemost 2001;86(05):
1327–1330

Hendriksen JM, Geersing GJ, Moons KG, de Groot JA. Diagnostic
and prognostic prediction models. J Thromb Haemost 2013;11
(Suppl 1):129–141

Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models:
issues in developing models, evaluating assumptions and ade-
361–387

Peduzzi P, Concordia J, Kemper E, Holford TR, Feinstein AR. A simula-
tion study of the number of events per variable in logistic

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are
associated with poor prognosis in patients with novel coronavirus

respiratory distress syndrome and death in patients with coro-
navirus disease 2019 pneumonia in Wuhan, China. JAMA Intern
Med 2020;180(07):1–11

Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and

Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of COVID-
19 from Wuhan. A retrospective observational study. Am J Respir
Crit Care Med 2020;201(11):1372–1379

Cattaneo M, Bertinato EM, Birocchi S, et al. Pulmonary embolism
or pulmonary thrombosis in COVID-19? Is the recommendation
to use high-dose heparin for thromboprophylaxis justified?. Thromb
Haemost 2020;120(08):1230–1232

Mons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting
of a multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med
2015;162(01):W1–73

diagnosis and prognosis of covid-19 infection: systematic review
and critical appraisal. BMJ 2020;369:m1328

Richardson S, Hirsch JS, Narasimhan M, et al; and the Northwell
COVID-19 Research Consortium. Presenting characteristics,
comorbidities, and outcomes among 5700 patients hospitalized
with COVID-19 in the New York City Area. JAMA 2020;323(20):
2052–2059

characteristics of patients hospitalized with laboratory-con-
formed coronavirus disease 2019 - COVID-NET, 14 states,
(15):458–464

19 cases: a systematic literature review and meta-analysis. J Infect
Dis 2020;2052:41–e25

Mehra MR, Desai SS, Kuy S, et al. Cardiovascular disease,
382:e102

Miyara M, Tubach F, Pourcher V, et al. Low incidence of daily active
tobacco smoking in patients with symptomatic COVID-19. Qeios

progression with AI techniques. medRxiv 2020. Doi: 10.1101/
2020.03.20.20037325

Gong J, Ou J, Qiu X, et al. A tool for early prediction of severe
coronavirus disease 2019 (COVID-19): a multicenter study using
the risk nomogram in Wuhan and Guangdong, China. Clin Infect
Dis 2020;71(15):833–840

Li DL, Shen F, Yin Y, Peng JX, Chen PY. Weighted Youden index and
its two-independent-sample comparison based on weighted
sensitivity and specificity. Chin Med J (Engl) 2013;126(06):
1150–1154

COVID-19: a randomised, double-blind, placebo-controlled, mul-
ticentre trial. Lancet 2020;395(10236):P1569–P1578