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Objective The aim of this study was to determine if mesenchymal stem cells (MSCs)
would suppress the inflammatory response in human uterine cells in an in vitro
lipopolysaccharide (LPS)-based preterm birth (PTB) model.

Study Design  Cocultures of human uterine smooth muscle cells (HUtSMCs) and MSCs
were exposed to 5 pg/mL LPS for 4 hours and further challenged with 1 pg/mL LPS for a
subsequent 24 hours. Key elements of the parturition cascade requlated by toll-like
receptors (TLRs) through activation of mitogen-activated protein kinases (MAPKs) were
quantified in culture supernatant as biomarkers of MSC modulation.

Results Coculture with MSCs significantly attenuated TLR-4, p-|NK, and p- extracellu-
lar signal-regulated kinase 1/2 (ERK1/2) protein levels compared with HUtSMCs
monoculture (p =0.05). In addition, coculture was associated with significant inhibi-
tion of proinflammatory cytokines interleukin (IL)-6 and IL-8 (p = 0.0001) and increased
production of anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-
B1 (p=10.0001).

Conclusion MSCs appear to play a role in significantly attenuating LPS-mediated
inflammation via alteration of down-stream MAPKs. MSCs may represent a novel, cell-
based therapy in women with increased risk of inflammatory-mediated preterm birth.

Preterm birth (PTB) <37 weeks occurs in approximately 10% of
births in the United States and is the leading cause of neonatal
mortality and morbidity.'™* Although the mechanisms are
multifactorial, infection and inflammation play a critical role
in a large proportion of PTB>* Parturition in itself is an
inflammatory process® and pathologic activation of the inflam-
matory response that regulates parturition initiation contrib-
utes to PTB.">7:8 The majority of PTBs are spontaneous owing
to dysfunctional activation of uterine activity or preterm
premature rupture of the fetal membranes (PPROMs).>'" A
proinflammatory environment is a common phenomenon in
both infectious and idiopathic PTB. Toll-like receptor-4 (TLR-4)
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mediates innate immune recognition and response to the
bacterial endotoxin lipopolysaccharide (LPS).'?"'* TLR-4 acti-
vation is thought to play a crucial role in preterm delivery and
normal labor.">"7 Both acute inflammation and chronic
inflammation (such as stress) appear to contribute to TLR-4-
mediated preterm birth pathways. LPS-mediated stimulation
of TLR-4 leads to activation of nuclear factor (NF)-kB signaling
pathway and proinflammatory cytokines.18 TLR-4 activates
mitogen-activated protein kinases (MAPKs) including cJun
N-terminal kinase (JNK), extracellular signal-regulated kinase
(ERK1/2), and IxB-a that culminates in activation of the tran-
scription factor NF-kB, ultimately stimulating the production of
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proinflammatory cytokines.'>?? The association between
elevated levels of proinflammatory cytokines and preterm birth
is well evidenced.'®2! Myometrial cells are capable of produc-
ing interleukin (IL)-6 and IL-8 in synergy with infiltrating
immune cells in due course stimulating myometrial contractil-
ity.2 Lei et al?3 affirm the association between the inflamma-
tory response and human parturition through myometrial
release of proinflammatory cytokines. In addition, the role of
MAPKs activation in the human cervix and placenta preceding
labor have been described.?*% Parallel studies in LPS-based
rodent models substantiate activation of TLR-4 signaling path-
way and proinflammatory cytokines in the induction of PTB."”
LPS-mediated activation of TLR-4 followed by MAPK protein
activation triggers production of proinflammatory cytokines,
activating the NF-kB pathway, and increasing the risk of
preterm birth.!7-%®

Mesenchymal stem cells (MSCs) are unique multipotent cells
that possess powerful immunomodulatory properties.27 MSCs
are currently being tested in clinical trials at different phases for
a variety of pathologic conditions including graft versus host
disease, inflammatory airway diseases, and inflammatory bow-
el diseases.?®?° Given the growing acceptance of MSCs as a
biotherapeutic, we hypothesized that MSCs could be beneficial
for ameliorating uterine inflammation and reducing pathologic
activation of contractions. MSCs could have potential benefit in
clinical situations where infection does not prompt therapeutic
delivery such as idiopathic preterm labor, uterine fibroid
degeneration, placental abruption, intra-abdominal inflamma-
tion/appendicitis, and PPROM without infection among others.
The objective of this study was to determine whether MSCs
would suppress the inflammatory response in human uterine
smooth muscle cells (HUtSMCs) exposed to lipopolysaccharide
(LPS) in vitro.

Materials and Methods

Cell Culture

HUtSMCs and MSCs were purchased from PromoCell, (Heidel-
berg, Germany). They were grown in smooth muscle cell
growth medium and MSC growth medium with supplement
mix (PromoCell, Heidelberg, Germany), respectively, at 37°Cin
a humidified atmosphere of 95% air and 5% CO, At 90%
confluent monolayer, HUtSMCs were plated at a density of
2 x 10° cells per well in a 12 well plate (Corning, NY) and
treated with LPS. HUtSMCs were divided into the following
experimental groups: (1) control (saline), (2) LPS (no MSCs),
(3) MSC coculture (no LPS), and (4) LPS and MSC coculture.
Following treatment with LPS or vehicle, HUtSMCs were
monocultured or cocultured with MSCs and plated at a total
cell density of 2 x 10° cells (Corning transwell; 0.4 pm pore
size; =Fig. 1A). After 24 hours, culture supernatants from the
myometrial cells were collected, centrifuged at 1,500 rpm for
10 min to remove any cell contamination, and stored at —80°C
until further use. LPS (Escherichia coli 055:B5) was purchased
from Sigma Aldrich (St. Louis, MO). Concentration for the LPSin
in vitro model was determined by dose kinetic studies as
follows: HUtSMCs were challenged with 5 pg/mL LPS for
4 hours followed by different doses of either 100 ng/mL, 1 or
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2ug/mL LPS for 24 hours to elicit an inflammatory response
(=~Fig. 1B-D). Based on the dose kinetic study, 5 pg/mL LPS for
4 hours, followed by 1 pg/mL LPS for another 24 hours was
used in all subsequent experiments based on the maximal
stimulation of the IL-6.

Cytokine Measurement by ELISA

Proinflammatory cytokines were measured including IL-6
and IL-8. Anti-inflammatory cytokines were also measured
including IL-10 and TGF-B1. Secreted protein levels were
quantified using standard enzyme-like immune sorbent
assay (ELISA) methodology performed in accordance with
the guidelines supplied by the manufacturer (R&D Systems,
Minneapolis, MN). The minimum detectable and quantifi-
able amount for IL-6 was 3.0 pg/mL, whereas for IL-8, IL-10,
and TGF- 1, it was 31.3 pg/mL.

Western Blot Analysis

To determine the possible mechanism by which MSCs attenu-
ated proinflammatory cytokines, we examined the expression
levels of TLR-4 and specific MAPKs, as LPS-mediated stimula-
tion of TLR-4 leads to activation of MAPKs culminating in the
production of proinflammatory cytokines. Protein expression
was assessed by Western blot analysis, wherein, HUtSMCs
were washed with ice-cold phosphate buffered saline (PBS)
and lysed with radioimmunoprecipitation assay (RIPA) buffer
(Boston Bio-products, Ashland, MA), supplemented with pro-
tease inhibitors (Halt Protease inhibitor 100X, Thermo Scien-
tific, Waltham, MA). Concentrations of sample protein were
determined by BCA protein assay (Pierce, Rockford, IL). Protein
extracts were resolved on 10 to 12% (sodium dodecyl sulfate)
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to nitrocellulose (NC) membranes, which were
blocked with 5% Bovine Serum Albumin (BSA). The NC mem-
branes were probed with primary antibodies against TLR-4,
(Santa Cruz Biotechnology, Dallas, TX), total ERK1/2, p-ERK1/2,
total JNK, p-JNK, and IkB-a (Cell Signaling Technology, Danvers,
MA), and incubated overnight at 4°C. The membranes were
washed in PBS of 0.1% Tween 20 and incubated with HRP-
conjugated secondary antibodies for 1 hour at room tempera-
ture. After successive washes, the membranes were developed
using Clarity Western Enhanced Chemiluminescence (ECL)
blotting substrate (Bio-Rad, Hercules, CA). Quantitative analy-
sis of the immunoblots was performed using LI-COR C-DiGit
Blot Scanner (LI-COR Biosciences; Lincoln, NE) and band
intensities were measured by densitometry analysis. All the
samples were normalized for protein loading using B-actin.

Data Analysis

Data are expressed as mean + standard error of the mean
(SEM). Statistical analysis was performed using Graph-Pad
Prism (version 6.0, La Jolla, CA). Comparisons of cytokines
expression among the above four groups were analyzed
using one-way analysis of variance (ANOVA) with Tukey’s
post hoc test. Comparison of MAPK levels were compared
between myometrial cells exposed to LPS and those exposed
to LPS and cocultured with MSCs. A p-value of <0.05 was
considered statistically significant.
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Fig. 1 Mesenchymal stem cells (MSC) attenuated proinflammatory cytokines IL-6 and IL-8 in LPS treated uterine cells. Uterine cells cocultured
with mesenchymal stem cells in transwell inserts. (A) Uterine cells exposed to lipopolysaccharide showed significant increase in IL-6. (B) MSCs
coculture attenuate the expression of IL-6 and IL-8 (C and D). Data represent mean £ SEM. *p =0.0001. Ctl, control; IL, interleukin; LPS,

lipopolysaccharide; SEM, standard error of the mean.

Results

Attenuation of Proinflammatory Cytokines by MSCs
Cytokine levels in LPS-induced HUtSMCs were altered in the
presence of MSCs (~Fig. 1A, C, D). HUtSMCs exposed to LPS
and cocultured with MSCs exhibited significant attenuation
in the expression levels of IL-6 (LPS + MSC: 8.8 + 0.5 pg/mL
vs. LPS alone: 128.9+2.1 pg/mL, p=0.0001), and IL-8
(LPS +MSC: 9.43+1.0 pg/mL vs. LPS alone: 894.2 4+45.1
pg/mL, p =0.0001)

Attenuated Phosphorylation of JNK and ERK1/2 by MSCs
The expression of TLR-4 was increased in HUtSMCs when
exposed to LPS (=Fig. 2A). This effect was significantly
inhibited when LPS exposed HUtSMCs were cocultured
with MSCs, (LPS+ MSC: 1.25+0.1 pg/mL vs. LPS alone:
1.77 £ 0.09 pg/mL, p =0.05). Similarly, these observations
were seen with specific MAPK expressions (=Fig. 2B, C)
including significant reductions in the expression of p-JNK,
(LPS +MSC: 0.76 +0.15 pg/mL vs. LPS alone: 1.57 +0.05
pg/mL, p=0.0001) and p-ERK1/2 (LPS + MSC: 1.24 +0.36
pg/mL vs. LPS alone: 3.25+0.19 pg/mL, p=0.0001). In
contrast, the expression levels of IkB-a was significantly

decreased with LPS exposure, but was significantly increased
when cocultured with MSC, (LPS + MSC: 1.11 4+ 0.03 pg/mL
vs. LPS: 0.68 + 0.05 pg/mL, p = 0.006; ~Fig. 2D). Western blot
patterns for TLR-4 and MAPK’s are shown (=Fig. 2E).

Increased Expression of Anti-inflammatory Cytokines
IL-10 and TGF-B1

Even in the absence of LPS, MSC coculture was associated with
increased levels of both IL-10 and TGF-f1 levels by HUtSMCs
(=~Fig. 3A, B). However, with LPS treatment, MSC coculture
was associated with significantly greater increases in both IL-
10 (LPS + MSC: 81.63 4 6.23 pg/mL vs. MSC alone: 36.9 +4.5
pg/mL, p=0.0001; =Fig. 3A) and TGF-f1 (LPS+ MSC:
1,538.0 + 74.97 pg/mL vs. MSC alone: 969.5 +38.8 pg/mL;
p=0.0001, -Fig. 3B).

Discussion

Our work provides evidence that MSCs play a prime role in
significantly attenuating LPS-mediated inflammation via alter-
ation of down-stream mitogen-activated kinase pathways
(=Fig. 4). Further, our studies confirm the prior work in other
models that MSCs suppress inflammatory activation of JNK and
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Fig. 2 (A) Western blot analysis of LPS-treated uterine cells showed increased TLR-4 expression, but was attenuated in mesenchymal stem cell
cocultures. (B and C) Phosphorylation of ¢-Jun N-terminal kinase (JNK) and extracellular signaling requlator kinase (ERK1/2) were attenuated in
uterine cells treated with LPS and cocultured with mesenchymal stem cells. (D) IkB-a induction was higher in co-cultures of lipopolysaccharide-
treated with mesenchymal stem cells. (E) Western blots depiction of the data (E). Data represent mean & SE. *p =0.05, *p =0.0001,
“*p=0.0001, *p =0.006. Ctl, control; LPS, lipopolysaccharide; SEM, standard error of the mean; TLR, toll-like receptors.
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Fig. 3 Lipopolysaccharide (LPS) treated human uterine cells cocultured with mesenchymal stem cells expressed Increased induction of anti-
inflammatory cytokines IL-10 (A), TGF-B1 (B). Data represent mean & SE *p =0.0001. Ctl, control; IL, interleukin; SE, standard error; TGF,
transforming growth factor.

&é&é&&&&&&&&%&&& SLBULUUGUNBUUUNY

TIRAP

M,m‘ N\

R

MOAEXXAX

Inflammatory cytokine production l

Fig. 4 Schematic diagram depicting mechanism by which MSC’s attenuate inflammation in uterine cells exposed to LPS. ERK ¥, extracellular
signaling requlator kinase; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; MSC, mesenchymal stem cells; NF, nuclear factor;TIRAP, toll-
interleukin 1 receptor adapter protein; MyD88, myeloid differentiation 88; TRAF6, tumor necrosis factor receptor-associated factor 6; IRAK, II-1
receptor-associated kinases.
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ERK1/2.3%-33 pathologic inflammation is thought to be one of
the primary factors leading to PTB'# and novel, cell-based
therapies in women with increased risk of inflammatory-
mediated preterm birth may fill current therapeutic gaps.

Our MSC cocultures exhibited inhibition of MAPKs path-
ways, impeding NF-kB expression, thereby dampening the
production of inflammatory cytokines IL-1 and IL-632
(=Fig. 4). Our findings of induced expression of proinflam-
matory cytokines IL-6 and IL-8 corroborated studies in
human endometrial endothelial cells** and other endothelial
subtypes.‘?’S‘37 Taken together, the evidence we present
suggests that our MSC/myometrial coculture model allows
for the efficient in-vitro study of human preterm birth
pathophysiology and potential therapeutic interventions
along this complex pathway.

The unique characteristic feature of MSCs are self-renewal
and multilineage differentiation that together create a potential
enduring therapeutic immunomodulatory role. The immuno-
suppressive properties of MSCs as potential novel modulators
of preterm birth leverage their prime role in innate immunity.?”
Innovative tissue engineering technologies have led to the
production of MSC three-dimensional (3D) scaffolds that pro-
mote secretion of anti-inflammatory cytokines and reduce
inflammatory cell infiltration in nonobstetric applications.38
This preclinical work has led to clinical trials of MSCs in various
human diseases, such as graft versus host disease, and
others.?®%° Hallmarks of these collection of investigations
include MSCs attenuated expression of proinflammatory cyto-
kines IL-6 and IL-83°*! and increased expression of anti-
inflammatory cytokines TGF-B1 and IL-104>*® Increased
MSC-mediated production of IL-10 by reduces sepsis induced
inflammation** and alleviates air way inflammation.*> MSC
administration has shown specific promise in rodent models of
other organ-based injuries, including heart and lung.#>#°

Our data introduce the provocative hypothesis that MSC-
mediated production of IL-10 and other soluble factors may
have clinical benefit in human preterm birth and other
inflammatory reproductive conditions such as uterine fibroid
degeneration during pregnancy, chronic placental abruption,
intra-abdominal inflammation/appendicitis during pregnan-
cy, and PPROM without infection among others. Only one prior
study has assessed the role of stem cells for prevention of
preterm birth, and that work was performed in a murine
model.?? In pregnant mice, pretreatment with MSCs decreased
the LPS-induced preterm birth rate by 21%. One promising
feature of MSCs was that they also alleviated LPS-induced
morphologic changes associated with neurotoxicity and
microglial activation suggesting a potential protective role
against neurological sequelae. This neuroprotective effect
was accompanied by decreased IL-6 levels in fetal brain and
increased IL-10 in dam serum. Additional in vitro and in vivo
studies are needed to better elucidate the specific mechanisms
involved in MSCs effects in preterm birth.

Conclusion
In conclusion, the results of this study provide support for an

innovative therapeutic paradigm of pregnancy-associated
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inflammatory pathology. Our data suggest that MSCs medi-
ate immunosuppression of LPS treated uterine cells through
TLR-4, MAPK pathways, and modify cytokine expression.
While the concept of biology-based therapy in pregnancy
presents its own set of investigative and clinical challenges,
current therapies have proven inadequate. Since MSCs inter-
polate themselves into pathologically stimulated uterine
tissue, they can provide ongoing immunomodulation which
may be superior to single or repetitive dosing of pharmaco-
logic agents tilting the risk/benefit ratio. Further investiga-
tions comparing the in-vivo efficacy and side-effect profile of
MSCs compared with more traditional anti-inflammatory
and neuroprotective agents will help crystallize the feasibil-
ity of MSCs as a novel cell-based therapy.
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