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Introduction

Amino acids are fundamental components of proteins,
enzymes, peptides, peptide hormones, receptors, antibodies,
and signaling molecules in living organisms. They are a family
of important molecules in nature as well as in food, biotech,
chemical, and pharmaceutical industries. In pharmaceutical
field, amino acids are not only used directly as nutriments and
clinical drugs, but also widely applied as starting materials,
catalysts, or chiral ligands for the synthesis of active pharma-
ceutical ingredients. The first amino acid asparagine was
isolated and discovered by French chemists Louis-Nicolas
Vauquelin and Pierre-Jean Robiquet in the plant asparagus in
1806.1Sincethenmanyaminoacids including20commonones

havebeendiscovered, structurally confirmed, synthesized, and
studied.2 In 1851, Louis Pasteur revealed the optical activity of
asparagineandasparticacid,3 leading to the realization that the
optical activity of most common amino acids arises from their
differing orientations around the α-carbon.4 With the only
exception of glycine, all common amino acids exist in two
possible specular structures which are mirror images of each
other, called D-(dextro) and L-(levo) enantiomers (►Fig. 1).5

During evolution, L-amino acids were preferred for protein
synthesis and main metabolism. The initial discovery and
configurational assignment of amino acids led to a view that
L-amino acids were solely found in nature and D-amino acids
are artificial products.4,6 However, the D-amino acids, playing
different and specific functions in different organisms,7–10
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Abstract This review covers the recent development on the natural occurrence, functional
elucidations, and analysis of amino acids of the D (dextro) configuration. In the
pharmaceutical field, amino acids are not only used directly as clinical drugs and
nutriments, but also widely applied as starting materials, catalysts, or chiral ligands for
the synthesis of active pharmaceutical ingredients. Earler belief hold that only L-amino
acids exist in nature and D-amino acids were artificial products. However, increasing
evidence indicates that D-amino acids are naturally occurring in living organisms
including human beings, plants, and microorganisms, playing important roles in
biological processes.WhileD-amino acids have similar physical and chemical character-
istics with their respective L-enantiomers in an achiral measurement, the biological
functions of D-amino acids are remarkably different from those of L-ones. With the
rapid development of chiral analytical techniques for D-amino acids, studies on the
existence, formation mechanisms, biological functions as well as relevant physiology
and pathology of D-amino acids have achieved great progress; however, they are far
from being sufficiently explored.

DOI https://doi.org/
10.1055/s-0040-1713820.
ISSN 2628-5088.

© 2020 Georg Thieme Verlag KG
Stuttgart · New York

THIEME

Review Article e79

Published online: 2020-07-07

mailto:shuangxigu@163.com
mailto:rfchen@fudan.edu.cn
https://doi.org/10.1055/s-0040-1713820
https://doi.org/10.1055/s-0040-1713820


were found naturally occurring in a wide variety of living
organisms both in their free form and as isomeric residues in
many proteins in the past decades.11,12 Interestingly, D-amino
acids are naturally occurring in animals including human
beings, plants, and microorganisms, and could be formed
during food processing and originate from microbial sources
and from aqueous, soil, and other environments.5 In this
review, the natural occurrence, biological function, and analyt-
ical methods ofD-amino acids are summarized and discussed.

Natural Occurrence and Biological Functions
of D-Amino Acids

Recognition of thebiological importance ofD-amino acidswas
enabled by the development of relevant analytical techniques,
and has stimulated interdisciplinary collaborations. D-Amino
acids were previously called “nonnative” or “unnatural”
because they are not encoded by RNA, and in most cases
they are not used as the building blocks of structural proteins
of cellular and noncellular forms of life.13 While the driving
force for nature’s choice of L- over D-amino acids for protein
transcription from RNA seems to be arbitrary, nevertheless it
has been a source of fascination to scientists probing the origin
of life. In fact, the existence of D-amino acids is not indepen-
dent from that of L-amino acids. L-Amino acids are the

overwhelmingly predominant enantiomers of amino acids
found in living organism proteins, meanwhile they act as the
substrate to generateD-amino acids. Conversions from L- toD-
aminoacidsoccur in thepresenceof theenzymeracemasethat
changes the stereochemistry of the chiral α-carbon in amino
acids.14 For example, D-serine (D-Ser) is an important amino
acid found abundant in different parts of rat brain including
cerebral cortex, hippocampus, anterior olfactory nucleus, and
amygdala.15 In mammals, the enzyme serine racemase (Srr)
converts L- toD-Ser in the presence of pyridoxal 5′-phosphate
(PLP; ►Fig. 2)14 as well as Mg2þ and ATP.16,17 In ►Fig. 2, the
enzyme catalyzes the racemization between L-Ser and D-Ser
(pathA)andtheα,β-eliminationofwater fromL-SerorD-Ser to
produce iminopyruvate (path B), which nonenzymatically
hydrolyzes to form pyruvate and ammonia.14 Since Ca2þ or
Mn2þ is necessary for enzyme activity, the presence of chela-
tors such as ethylenediaminetetraacetic acid (EDTA) could
completely deactivate the enzyme Srr.16

Interestingly, free D- and L-amino acids have been found in
bothArcticandtheAntarcticaerosol. In2015, Feltracco’sgroup
first determined the free and combined L- and D-amino acids
in Arctic aerosol, which were collected at the Gruvebadet
observatory (Svalbard Islands). The mean relative contents
of D- and L-alanine are 10 and 4% in all free amino acid in all
samples.18Another early investigation reported by Kaplan and
Moore’s group suggested the indigenous nature of amino acids
andhydrocarbons in theMurchisonmeteorite. Thepresenceof
the amino acids such as glycine, alanine, valine, proline,
glutamic acid, 2-methylalanine, and sarcosine was unequivo-
cally established. The presence of almost equal amounts of the
D- and L-enantiomers of valine, proline, alanine, and glutamic
acidminimizedthepossibilityof terrestrial contaminationand
suggested a possible extraterrestrial origin.19

Fig. 1 Fisher projection formulae for L- and D-amino acids.

Fig. 2 Serine racemase pyridoxal-5′-phosphate-mediated conversion.
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In an achiral environment, the physical and chemical
characteristics of D-amino acids is similar to those of L-amino
acids. However, the physiological functions of D-amino acids
are remarkably different from those of L-amino acids. Albeit in
much smaller proportions, D-amino acids exist widely in
animals (including human beings), plants, microorganisms,
and other circumstances in natural world, in free form, or as a
part of other substances, playing various roles in different
biological systems. In particular, free D-Ser and D-aspartate
(D-Asp) have been identified in a wide variety of mammalian
tissues and cells at relatively high concentrations.

In Animals (Including Human Beings)
With the development of sensitive analytical techniques, such
as chromatography and mass spectrometry, various D-amino
acids were successively discovered. An increasing number of
evidence show that free D-amino acids as novel bioactive
substances play important roles in physiological functions
and involvement inhumanpathophysiology.20Among various
D-amino acids, D-Ser is an important D-amino acid with
multiple biological functions relevant to brain development
and hence is among the most well studied.21 Early around
1970, D-amino acids was found to exist in some classes of
bacteria and some insects andworms.6,22 In the following two
decades, the presence of D-amino acids in significant quanti-
ties was discovered in various classes ofmarine and terrestrial
animals.23 In 1992 and 1993, Hashimoto et al adopted gas
chromatography (GC) and mass spectrometry to find that
natural D-Ser was present in rodents and human brains at
significantly higher concentrations than other D-amino acids,
such as D-Asp and D-alanine (D-Ala).24,25 Their findings
pointed that D-Ser as a potential endogenous co-ligand for
the N-methyl-D-Asp (NMDA) receptor. Moreover, D-amino
acid oxidase (DAAO), the enzyme that degrades D-Ser, had
been discovered in mammals before the demonstration of
endogenousD-Ser. The structures and functions of DAAOhave
received intense attention in recent years due to its versatili-
ty.26–30 In1995, Schell et al discovered thatD-Serwas localized
principallywithin glial cells. Specifically, they found that type-
2 astrocytes, which were cultured from cerebral cortex,
expressed particularly high levels of D-Ser.31 The key enzyme
Srr, which converts L-Ser to D-Ser, was thought to be respon-
sible for the synthesis of D-Ser. Srr was initially found in
astrocytes and microglia in the mammalian brain. However,
later research showed that Srr was also identified in neurons,
exemplifying that D-Ser was not generated solely by astro-
cytes.21 Further research indicated that neurons were not the
sole source of D-Ser.32

Themammalian brain contains unusually high levels ofD-
Ser. Several studies demonstrated that D-Ser was a physio-

logical co-agonist of the NMDA type of glutamate receptor—a
key excitatory neurotransmitter receptor in the brain. D-Ser
binds with high affinity to a co-agonist site at the NMDA
receptors, along with glutamate, and mediates several
important physiological and pathological processes, includ-
ing NMDA receptor transmission, synaptic plasticity, and
neurotoxicity.33 Scientists have revealed the mechanisms of
D-Ser mediated pain induction.34 Some presentative
research studies showed that DAAO-mediated antinocicep-
tive actions occur along with a significant decrease of D-Ser
levels in the brain35,36 and the spinal cord.36 Moreover, D-
Ser-induced nephrotoxicity is believed to be associated with
oxidative stress caused by hydrogen peroxide, a byproduct of
DAAO-mediated metabolism of D-Ser37 (►Fig. 3).14

D-Asp is another aminoacidexistingextensively inanimals.
Dunlop et al first reported the existence of free D-Asp in
mammals including human beings in 1986.38 Since then,
substantial amounts of D-Asp have been found in various
mammalian tissues, particularly the central nervous, neuro-
endocrine, and endocrine systems. Alterations in D-Asp levels
during development and localization of D-Asp in these tissues
havebeen investigated in detail. In several regions of thebrain,
concentrations of D-Asp are elevated during early develop-
ment.39 D-Asp levels in the rat cerebrum (approx. 140 nmol/g
wet weight) and rat cerebellum (approx. 70 nmol/g wet
weight) are both relatively high after birth. The former rapidly
decreases to trace levels by 3 weeks of age, and the latter
gradually decreases thereafter.40 In human prefrontal cortex,
the concentrations of D-Asp reach as high as approx. 0.36 μ-
mol/g wet weight at 14 weeks of gestation.25 Its content
exceeds that of its enantiomer L-Asp, and then decreases
rapidly to trace levels at birth and remains low.7 Immunohis-
tochemical analysis of the rat embryonic brain with a specific
anti-D-Asp antibody revealed that D-Asp is initially expressed
in the hindbrain, after which it spreads into the forebrain and
then throughout the entire brain.41

Among the free D-amino acids that have been identified in
mammals, D-Asp plays a crucial role in the neuroendocrine
and endocrine systems as well as in the central nervous
system.7 It works as a hormone-like substance in the human
body.42 For example, it promotes testosterone synthesis in the
testicle,43 and regulates synthesis of oxytocin, vasopressin,
and prolactin in the posterior pituitary gland.44–46 The role of
D-Asp as a neurotransmitter has been demonstrated in recent
years.47 The generation of D-Asp might be catalyzed by Srr in
mice48; however, some mechanisms are unclear regarding its
synthesis in mammals.46 In addition to the synthesized D-Ser
and D-Asp catalyzed by various enzymes in cells, some D-
amino acids from various foods and enteric bacteria are also
ingested and metabolized in the human body. D’aniello et al

Fig. 3 DAAO-mediated metabolism of D-Ser.
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investigated the ingestion of D-amino acids by feeding adult
animals of different species, includingman, rat, mouse, rabbit,
chicks, with a given quantity of D-amino acids followed by
measuring the levels of D-amino acids and their oxidative
products in thebloodandsolid tissuesafter a time interval. The
results showed that no intestinal barrier existed for absorption
of D-amino acids, which were absorbed by the intestine and
transferred through theblood to solid tissues.Only10 to20%of
the total D-amino acid ingested was excreted in the feces and
urine. The other 80 to 90% was absorbed by the intestine and
metabolized in the liver and kidney, which were the richest
sources of DAAO and D-Asp oxidase.23 Another interesting
discovery is that D-amino acids in proteins can be interpreted
as molecular markers of aging.49

Functions of D-Amino Acid Residues
D-Amino acid residues in various sequences often play key
roles in biological functions. The venom of the North Ameri-
can funnel-web spider Agelenopsis aperta contains a variety
of proteinaceous toxins which are able to block calcium
channels. These peptides called agatoxins differ only by
the presence of D-Ser in the amino acid sequence. The toxin
that contains D-amino acid is more effective than its
L-analogue.50,51 D-methionine residue is found present in
the defensin-like peptide (DLP-2) isolated from the platypus
venom. Male platypus (Ornithorhynchus anatinus) could
produce a poisonous secretion, which is quite capable of
killing a small animal like dingo. The poisonousness of DLP-2
has been found to be associated with the presence of
D-methionine.52–54 D-Asp residues have also been discov-
ered in proteins associated with age-related human disor-
ders, such as cataract and Alzheimer’s disease. In 2017, Ha
et al investigated D-amino acid-containing peptides in adult
human serum by a qualitative analytical method based on
diastereomer and liquid chromatography/mass spectrome-
try (LC-MS/MS) method. Two D-Asp-containing peptides
were detected in serum, in which one was fibrinopeptide
B, preventing fibrinogen from forming polymers of fibrin,
and the other was the same peptidewith C-terminal arginine
missing. The research provides a new direction on the serum
proteome and fragmentome.55

D-Amino Acids as Nutritious Ingredients of Animal Fodders
Amino acids are important nutritious ingredients of animal
fodders. Farm animals remain the basis of the global food
supply. Almost all functions of a living organism are related to
their protein components to some extent. Proteins perform
various functions such as catalytic, regulatory, structural,
receptor, protective, molecular transport, and respiratory
ones. The proteins are built exclusively from the proteins
and L-amino acids of the food. Some of these amino acids
are produced by microbiological synthesis in certain types of
autotrophic soil bacteria,while others are produced by chemi-
cal synthesis in the form of chlorinated racemic mixtures
requiring subsequent separation procedures. In most cases
this procedure is not used because of a significant increase in
the cost of thefinal fodder product, thus for farm animals,D,L-
racemates are frequently given. The removal of D-isomers of

amino acids from fodder is necessary for several reasons: they
have low metabolic and nutritional value (►Table 1), reduce
the availability of L-amino acids, and require the involvement
of at least two energy-consuming pathways for their utiliza-
tion in animal cells. Several previous studies indicate that
several D-isomers of amino acids have been shown to have
toxic effects for some mammals and poultry.13 Undoubtedly,
D-amino acids are closely related to the health of animals
including human beings.

In Plants
Some commonD-amino acids includingD-Asp,D-asparagine
(D-Asn), D-glutamic acid (Glu), D-glutamine (Gln), D-Ser,
and D-Ala could be detected in most of the plants, and
D-proline (Pro), D-valine (Val), D-leucine (Leu), and D-lysine
(Lys) in certain plants.56 Amino acids are also abundant in
various fruits and vegetables. For example, D-Ala, D-Asp,
D-Arg, and D-Glu are present not only in some fruits such as
apples, grapes, oranges, but also in vegetables such as carrots,
tomatoes, cabbages.57

Plants are readilyable touptakeD-aminoacids fromthesoil.
The proportion ofD-amino acids in the total amino acid pool of
different plant parts (including seeds, fruits, leaves, etc.) can
reach around 1.5%.58 The natural amounts of D-amino acids in
fruits and vegetables are usually lower than 3.4 and 0.7%,
respectively. The highest amount of individual D-amino acids
foundwas 3.4%D-Asn and 1.9%D-Asp in grapefruit, 2.7%D-Ala
and 1.7%D-Ser in apples, and 1.3%D-Glu in clementines.5 For a
long time, plant growth inhibition by certain D-amino acids
and slow degradation of D-amino acids by plants were
neglected, as well as the possibility that D-amino acids could
be serving as a nitrogen source or play a role as important
regulatory molecules.59 D-Ser, D-Ala, and D-Arg have been
shown to strongly inhibit the growth of Arabidopsis.58 Con-
trarily, D-isoleucine (Ile) and D-Val can promote growth of
Arabidopsis,60 and D-Lys can promote growth of both Arabi-
dopsis and tobacco.61

D-Amino acid derivatives arewidely present in algal thalli
and seedlings of higher plants, mainly in the form of

Table 1 Nutritional value of D-isomers of amino acids as a
percentage of that of the L-isomers13

Amino acid Chick Dog Pig

D-lysine 0 – –

D-threonine 0 – –

D-tryptophan 20 35 80

D-methionine 90 100 100

D-arginine 0 – –

D-histidine 10 – –

D-leucine 100 – –

D-valine 70 – –

D-isoleucine 0 – –

D-phenylalanine 75 – –

D-tyrosine 100 – –
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dipeptides andmalonic acid esters.13,56 The growth of higher
plants such as soybeans and tomatoes is likely to be relevant
to the presence of a D-tryptophan (Trp) derivative as pre-
cursors of plant hormones auxins.62

Increasing evidence showed thatD-amino acids canbeboth
produced and metabolized by plants, since D-amino-acid-
related enzymes, such as racemases, D-amino acid amino-
transferases, or DAAOs, have been discovered in different
plants.59 Moreover, D-Ala can be taken up and assimilated
by wheat from the solution of mixed nitrogen sources, where
D-Ala uptake was fivefold faster than NO3

�.63 Michard et al
brought yet another argument in 2011 for the role ofD-amino
acids as important modulators of plant development. Their
study has shown that D-Ser influences pollen tube develop-
ment in Arabidopsis and tobacco, and D-Ser racemase is
important for D-Ser-mediated signal transduction.59,64

In Microorganisms
Microorganisms produce, use, and metabolize D-amino acids,
and could potentially serve as a supply source for them. In all
bacteria, D-Ala and D-Asp were found in high concentrations;
besides, the dipeptideD-Ala-D-Ala contributes to the antibiotic
resistance.65 The bacterial cell wall maintains the integrity and
morphology of bacteria and comprises membrane layers and a
rigid peptide-glycan scaffoldknownaspeptidoglycan (PG).66 In
the 1970s, D-Ala, D-glutamate, and D-Asp were found in
bacterial cell walls as constituents, and D-amino acids were
observed to existwidely innature. The initialfindings led to the
conclusion that D-amino acids were only rarely present in
bacterial cell walls, but with the development of chiral analyti-
cal techniques, various kinds of D-amino acids were identified
in free forms in diverse organisms.46 In 2013, Mutaguchi et al
reportedthat lactic fermentation is responsible for theD-amino
acid production. And obvious increases in D-amino acids were
seen during lactic fermentation, but not during alcoholic or
acetic fermentation. This suggests that lactic acid bacteria have
a greater ability to produce D-amino acids than yeast or acetic
acid bacteria.67 In 2018, Matsumoto et al performed simulta-
neous analysis of chiral amino acids using the highly sensitive
LC-MS/MS technique and 12 free D-amino acids (D-Ala, D-Arg,
D-Asp, D-Gln, D-Glu, D-allo-Ile, D-Leu, D-Lys, D-methionine
(Met), D-phenylalanine (Phe), D-Ser, and D-Trp) produced by
intestinal were identified, which belong to Firmicutes as the
relevant bacterial candidates.68

In Vibrio cholerae, the production of D-amino acids in its
stationary phase and their incorporation into the PG polymer
control the strength and amount of this structure, thereby
providing fitness against low osmolarity and stationary
phase stresses such as starvation, growth arrest, or accumu-
lation of secondary metabolites.59 The presence of D-amino
acids in the peptide moieties of the PG of bacteria makes the
cell wall invulnerable to most proteases designed to cleave
between L-amino acids. Additionally, the presence of alter-
native D-amino acids like D-Asp or D-Ser at the terminal
position of the stem peptide provides tolerance to certain
bactericidal agents such as vancomycin.

Based on different mechanisms, some D-amino acids
serve to prevent the formation of the biofilms of various

kinds of bacteria and disassemble formed biofilms.69–71

Their research results showed that D-Leu, D-Met, D-tyrosine
(Tyr), D-Trp and their mixture can inhibit the biofilm forma-
tion of Bacillus subtilis69 and Staphylococcus aureus.70 Due to
their antibiofilm and bactericidal effects, application of D-
amino acids is an attractive antimicrobial strategy both alone
or in synergy with existing antibiotics.59

Biologically active peptides containing D-amino acids are
also found in the cells of higher eukaryotic organisms; the only
difference is that they are primarily formed as a result of
posttranslational modification of a precursor consisting of L-
aminoacids.13Somenatural andsyntheticpeptides, containing
D-amino acids, have strong antimicrobial properties. Synthetic
peptides, containing glycyl-D-Ala, myristoyl-D-Asp, and
sorbyl-D-Trp, can inactivateClostridiumbotulinum.72 Innatural
antibiotics, D-Asp, D-Glu, D-Phe, and D-ornithine (Orn) are
present inbacitracin;D-Val inpenicillinG;D-Ala,D-Leu, andD-
Val in actinomycin, gramicidin, and valinomycin;D-Asp andD-
Glu inmycobacillin;D-PheandD-Trp in fungisporin, tyrocidine
A, B, C, and D.14

Analysis of D-Amino Acids

Because of their important roles implicated in the biological
system, there has been a ceaseless pursuit for ever more
sensitive analysis of D-amino acids in various biological
samples. Chiral analysis of amino acids is rather challenging
especially in the case of complex biological systems.73 Chiral
analyses of amino acids are encumbered by the following
difficulties: (1) while a high level of L-amino acids can be
found in the tissues, their D-enantiomers are usually present
in one or two orders of magnitude lower concentration,
which requires extremely high sensitivity of instruments.
(2) In many cases, derivatization is often required for their
optical detection, because most amino acids lack either a
chromophore or a fluorophore moiety. However, derivatiza-
tion is not only time consuming but also the source of several
analytical errors. And also, racemization of amino acid
enantiomers might occurs at a high temperature or under
acidic conditions. (3) Formany biological samples containing
D-amino acids at low concentrations, derivatization is not
reliable due to complex competing reactions.

The increasing discoveries involving D-amino acids as
well as their derivatives are ascribed to the development of
analytical methods, especially chiral chromatography. A
large number of documents are based on LC as well as its
relevant combination techniques. For example, in 1995,
Fukushima et al used chiral high-performance LC (HPLC)
with fluorometric detection (HPLC-FD) to analyze human
serum and found D-Ala at a concentration of 0.48 to 3.10 μ-
mol/L.74 In 2006, Song et al adopted a sensitive chiral
HPLC-MS/MS method to determine amino acid enantiomers
in biological samples of 3-day and 90-day rat brain, and
found 12 amino acids, and among them, the content of D-Ser
is 82.3 μg/g (3-day-old) and 241.3 μg/g (90-day-old).75 In
2020, Kimura et al developed a cognitive function marker
based on D-amino acid proportions using new chiral tandem
LC-MS/MS systems, which was used to analyze the
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enantiomeric proportions of amino acids in blood samples.76

Moremethods based on chiral LC such as HPLC-UV, 2D-HPLC-
FD, and UPLC-MS/MS are not listed herein; please refer to the
review.73 Chiral GC is also a very common method for
enantiomeric amino acid analysis. Since free D-Ser was first
identified in rat brain,24 an increasing number of documents
reported GC-based methods such as GC-MS, 2D GC-TOFMS,
etc.73,77–80 Capillary column Chirasil-L-Val and cyclodextrin-
based chiral stationary phases both are frequently used
chiral solid phases.

In addition to chiral LC and GC techniques, some other
analytical methods such as chiral capillary electrophoresis
(CE) as well as chiral CE-MS,81–84 enzyme-based microbio-
sensors,85 chiralmicellar electrokinetic capillary chromatog-
raphy,86,87 and chiral microchip electrophoresis88,89 have
been applied in the analysis of D-amino acids in biological
samples. It is noteworthy that CE has beenwidely used in the
enantiomeric analysis of various chiral compounds including
amino acids due to their high enantioselectivity, low cost,
and chromatography/CE compatibility.90–93 Measurements
of low-abundance, heterogeneously distributed, and endog-
enous D-amino acids in complex biological samples require
the implementation of sensitive and selective analytical
approaches. To measure the D- and L-forms of aspartate
and glutamate, in 2017, Patel et al developed and applied a
stacking chiral CE with a laser-induced fluorescence detec-
tion method, which enabled the relative quantification of D-
aspartate and D-glutamate in individual neurons mechani-
cally isolated from the central nervous system of the sea slug
Aplysia californica.94 In 2018, Zhang et al used optical-gated
CE with LIF detection (OGCE-LIF) to quickly and efficiently
separate amino acid enantiomers. Under the optimal OGCE-
LIF conditions, five pairs of D/L-amino acid pairs could be
separated in less than 1minute with the low limit of detec-
tion of 1.3 µmol/L.95

Since the D- and L-enantiomers of amino acids are natu-
rally occurring, directly used, and also applied as versatile
catalysts or synthetic precursors to diverse functional organ-
ic compounds and as chirality sources for asymmetric syn-
thesis and catalysis,96–99 great attention has been paid to
exploring the chiral analysis of amino acids. In recent dec-
ades, various analytical techniques have achieved success in
determining the yield and enantioselectivity of organic
molecules, including LC and GC methods (as mentioned
above), nuclear magnetic resonance spectroscopy, mass
spectrometry, circular dichroism spectroscopy,100 and fluo-
rescencemeasurements.101 Among them, fluorescencemea-
surement for chiral analysis has become a research hotspot
due to its multiple advantages such as high sensitivity,
multiple detection modes, noninvasive real-time imaging,
and potentials in online and high-throughput analy-
sis.102–107 Enantioselective fluorescent probes for chiral
recognition of protected and free amino acids have sprung
up like mushrooms in recent years.108–114 These chiral
fluorescent probes have great potential for analysis of the
optical purity and concentrations of amino acids, as well as
high-throughput screening of asymmetric reactions for pre-
paring chiral amino acids.

Conclusions

Amino acids, as components of protein, peptides, receptors
as well as antibodies, play important roles in life processes.
With the development of chiral analytical methods, scien-
tists have found that D-amino acids are widely present in
living organisms including animals, plants, and microorgan-
isms. The various biological functions of D-amino acids have
attracted much attention, and many interesting and signifi-
cant discoveries have been successively revealed. Accumu-
lating data indicate thatD-amino acids are closely relevant to
human physiology and pathophysiology. Many recent inves-
tigations have demonstrated the formation and increasing
amount of D-amino acid forms in food processing. The roles
of D-amino acids in the development, pathophysiology, and
treatment of cancer are being slowly revealed. Significantly
altered levels of specific D-amino acids are found in cancer
cells compared with nontumorigenic cells. There has been
growing recognition that bacteria contribute significantly to
thebody’sD-amino acid pool, and overprocessed foodsmight
contain more D-amino acids, which is a worrying issue.
However, on the other hand, D-amino acids also have
many useful functions for animals including human beings.
In view of these, effects ofD-amino acids and their metabolic
products on cellular and tissue functions, and the relation-
ship between D-amino acids in the human body and
health/diseases, are far from being sufficiently explored.
With their far-reaching impacts in biology, physiology, pa-
thology, andmedicine,webelieve that with the development
of ever more sensitive and selective analytic technologies,
the formation mechanisms of D-amino acids and their
derivatives in living organisms and their biological functions
will be elucidated more clearly to better serve the interest of
science and humanity.
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