Selfie Mode: Handy and Practical Tool to Prevent Horseshoe Headrest Induced Ocular Injury in Prone Position

Rudrashish Haldar 1 Arun K. Srivastava 2 Amit K. Verma 1

1 Department of Anaesthesiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
2 Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Address for correspondence Arun K. Srivastava, MCh, Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP 226014, India (e-mail: doctorarunsrivastava@gmail.com).

Prone or ventral decubitus position is frequently employed during neurosurgical procedures involving the craniovertebral junction, cervical, or lumbar spine. Horseshoe headrests are frequently employed to support the patients' forehead and cheeks in the prone position. Horseshoe headrests are well-known to cause pressure injuries like facial, malar, and conjunctival injuries. These injuries are attributed to the pressure effects generated by the weight of the head over the headrest, which is accentuated by the intermittent pressures generated during surgical manipulations. Amongst these, ocular injuries are the most dreaded complications which might lead to postoperative visual loss (POVL) that occurs due to surgery in the prone position along with other reasons like hypotension, embolism, etc. The ASA task force has agreed that horseshoe headrests increases the risk of ocular compression; therefore, the perioperative caregivers fastidiously attempt to prevent any ocular compression whenever horseshoe headrests are used. Some clinicians prefer pin systems for head fixation to eliminate pressure on the eyes and soft tissues; however, horseshoe headrest is commonly used in neurosurgical practice due to a variety of reasons.

Usual methods to avoid pressure over the eyeballs include the use of commercial eye protectors (Dupaco Opti-Guard) and foam headrest, but they themselves might cause eye compression and therefore should be avoided. Careful positioning of the patients during the initial stages of the surgery and repeated and vigilant observations during the intraoperative period to ensure the eyeballs remain devoid of pressure thus remains the best preventive strategy. Visual inspection of the eyeball necessitates the clinicians to physically bend below the headrest in order to observe the position of the eyeballs, which is ergonomically cumbersome and may not be feasible at all times intraoperatively. In addition, the view obtained, when the clinician is bending below, is at an angle and inaccurate. To ameliorate these limitations, we propose an innovative method. Mobile phones are nowadays ubiquitously available and are camera-equipped. The “selfie” feature is designed to capture pictures in front of the mobile screen. After positioning the patient, the selfie mode of the camera is selected, and the mobile screen is passed below the headrest to provide an exact perpendicular and real-time view of the face of the patient and its relative placement to the frame. (►Fig. 1). Any adjustments which need to be made is then reconfirmed as per the image on the screen. Intraoperatively repeated observations can be made after surgical manipulations are made, fortifying its utility in the dynamic surgical settings. Additional pictures (at 30-minute intervals) can be taken beneath the drapes, causing minimal disturbance. Although nothing can substitute physical verification and clinical judgement, this method adds a safety buffer to

Fig. 1 Photograph of the patient in prone position using “selfie mode” revealing eyes free from pressure.
avoid potential injuries. In today’s era, where emphasis is
laid on precise documentation, pictures of the final posi-
tion of the patient prior to draping and repeated pictures
intraoperatively serves as a proof should any dispute arise
due to inadvertent injuries later. Clinicians should therefore
be aware of this technique, in addition to manual and visual
inspection to prevent ocular pressure, and include it in their
clinical practice.

Conflict of Interest
None declared.

References
1 Shamshery C, Haldar R, Srivastava A, Kaushal A, Srivastava S,
Singh PK. An unusual cause of unilateral facial injuries caused
by horseshoe headrest during prone positional cranio-
vertebral junction surgery. J Craniocerv Jug Spine
2016;7(1):62–64
2 Jain V, Bithal PK, Rath GP. Pressure sore on malar prominences
by horseshoe headrest in prone position. Anaesth Intensive
Care 2007;35(2):304–305
3 Cheng MA, Sigurdson W, Tempelhoff R, Laurysen C. Visual loss
630, discussion 630–631
4 American Society of Anesthesiologists Task Force on
Perioperative Blindness. Practice advisory for perioperative
visual loss associated with spine surgery: a report by the
American Society of Anesthesiologists Task Force on perioper-
ative blindness. Anesthesiology 2006;104(6):1319–1328
5 Roth S, Tung A, Ksiazek S. Visual loss in a prone-positioned
spine surgery patient with the head on a foam headrest and
goggles covering the eyes: an old complication with a new