Semin Respir Crit Care Med 2020; 41(06): 786-797
DOI: 10.1055/s-0040-1712101
Review Article

Noninvasive Ventilation and High-Flow Nasal Therapy Administration in Chronic Obstructive Pulmonary Disease Exacerbations

Miquel Ferrer
1   Respiratory Intensive and Intermediate Care Unit, Department of Pneumology, Respiratory Institute, Hospital Clínic of Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
,
Antoni Torres
1   Respiratory Intensive and Intermediate Care Unit, Department of Pneumology, Respiratory Institute, Hospital Clínic of Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
› Author Affiliations
Funding This study was supported by Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CibeRes CB06/06/0028), Instituto de Salud Carlos III (ISCiii), 2009 SGR 911, and Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS).

Abstract

Noninvasive ventilation (NIV) is considered to be the standard of care for the management of acute hypercapnic respiratory failure in patients with chronic obstructive pulmonary disease exacerbation. It can be delivered safely in any dedicated setting, from emergency rooms to high dependency or intensive care units and wards. NIV helps improving dyspnea and gas exchange, reduces the need for endotracheal intubation, and morbidity and mortality rates. It is therefore recognized as the gold standard in this condition. High-flow nasal therapy helps improving ventilatory efficiency and reducing the work of breathing in patients with severe chronic obstructive pulmonary disease. Early studies indicate that some patients with acute hypercapnic respiratory failure can be managed with high-flow nasal therapy, but more information is needed before specific recommendations for this therapy can be made. Therefore, high-flow nasal therapy use should be individualized in each particular situation and institution, taking into account resources, and local and personal experience with all respiratory support therapies.



Publication History

Article published online:
28 July 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Vogelmeier CF, Criner GJ, Martinez FJ. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 2017; 195 (05) 557-582
  • 2 Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57 (10) 847-852
  • 3 Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 157 (5, Pt 1): 1418-1422
  • 4 Soler-Cataluña JJ, Martínez-García MA, Román Sánchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005; 60 (11) 925-931
  • 5 Suissa S, Dell'Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2012; 67 (11) 957-963
  • 6 Agustí AG, Barberà JA. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax 1994; 49 (09) 924-932
  • 7 Barberà JA, Roca J, Ferrer A. et al. Mechanisms of worsening gas exchange during acute exacerbations of chronic obstructive pulmonary disease. Eur Respir J 1997; 10 (06) 1285-1291
  • 8 Calverley PM. Respiratory failure in chronic obstructive pulmonary disease. Eur Respir J Suppl 2003; 47: 26s-30s
  • 9 Aubier M, Murciano D, Milic-Emili J. et al. Effects of the administration of O2 on ventilation and blood gases in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis 1980; 122 (05) 747-754
  • 10 Santos C, Ferrer M, Roca J, Torres A, Hernández C, Rodriguez-Roisin R. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 2000; 161 (01) 26-31
  • 11 Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet 2009; 374 (9685): 250-259
  • 12 Rochwerg B, Brochard L, Elliott MW. et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50 (02) 1602426
  • 13 Hudson LD. Survival data in patients with acute and chronic lung disease requiring mechanical ventilation. Am Rev Respir Dis 1989; 140 (2 Pt 2): S19-S24
  • 14 Torres A, Aznar R, Gatell JM. et al. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis 1990; 142 (03) 523-528
  • 15 Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014; 370 (17) 1626-1635
  • 16 Sellares J, Ferrer M, Cano E, Loureiro H, Valencia M, Torres A. Predictors of prolonged weaning and survival during ventilator weaning in a respiratory ICU. Intensive Care Med 2011; 37 (05) 775-784
  • 17 Girou E, Schortgen F, Delclaux C. et al. Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. JAMA 2000; 284 (18) 2361-2367
  • 18 Demoule A, Girou E, Richard JC, Taille S, Brochard L. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med 2006; 32 (11) 1756-1765
  • 19 Gay PC. Complications of noninvasive ventilation in acute care. Respir Care 2009; 54 (02) 246-257 , discussion 257–258
  • 20 Hernández G, Roca O, Colinas L. High-flow nasal cannula support therapy: new insights and improving performance. Crit Care 2017; 21 (01) 62
  • 21 Doshi P, Whittle JS, Bublewicz M. et al. High-velocity nasal insufflation in the treatment of respiratory failure: a randomized clinical trial. Ann Emerg Med 2018; 72 (01) 73.e5-83.e5
  • 22 Girou E, Brun-Buisson C, Taillé S, Lemaire F, Brochard L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. JAMA 2003; 290 (22) 2985-2991
  • 23 Demoule A, Girou E, Richard JC, Taillé S, Brochard L. Increased use of noninvasive ventilation in French intensive care units. Intensive Care Med 2006; 32 (11) 1747-1755
  • 24 Esteban A, Ferguson ND, Meade MO. et al; VENTILA Group. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 2008; 177 (02) 170-177
  • 25 Esteban A, Frutos-Vivar F, Muriel A. et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 2013; 188 (02) 220-230
  • 26 Chandra D, Stamm JA, Taylor B. et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998-2008. Am J Respir Crit Care Med 2012; 185 (02) 152-159
  • 27 Stefan MS, Shieh MS, Pekow PS, Hill N, Rothberg MB, Lindenauer PK. Trends in mechanical ventilation among patients hospitalized with acute exacerbations of COPD in the United States, 2001 to 2011. Chest 2015; 147 (04) 959-968
  • 28 Kaul S, Pearson M, Coutts I, Lowe D, Roberts M. Non-invasive ventilation (NIV) in the clinical management of acute COPD in 233 UK hospitals: results from the RCP/BTS 2003 National COPD Audit. COPD 2009; 6 (03) 171-176
  • 29 Hong SB, Oh BJ, Kim YS. et al; Korean study group on respiratory failure (KOSREF). Characteristics of mechanical ventilation employed in intensive care units: a multicenter survey of hospitals. J Korean Med Sci 2008; 23 (06) 948-953
  • 30 O'Donnell DE, Parker CM. COPD exacerbations. 3: pathophysiology. Thorax 2006; 61 (04) 354-361
  • 31 Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med 1995; 21 (06) 522-536
  • 32 Yanos J, Wood LD, Davis K, Keamy III M. The effect of respiratory and lactic acidosis on diaphragm function. Am Rev Respir Dis 1993; 147 (03) 616-619
  • 33 Appendini L, Patessio A, Zanaboni S. et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1994; 149 (05) 1069-1076
  • 34 Diaz O, Iglesia R, Ferrer M. et al. Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 156 (06) 1840-1845
  • 35 Garcia-Aymerich J, Monsó E, Marrades RM. et al; EFRAM Investigators. Risk factors for hospitalization for a chronic obstructive pulmonary disease exacerbation. EFRAM study. Am J Respir Crit Care Med 2001; 164 (06) 1002-1007
  • 36 Celli BR, Barnes PJ. Exacerbations of chronic obstructive pulmonary disease. Eur Respir J 2007; 29 (06) 1224-1238
  • 37 Roberts CM, Lowe D, Bucknall CE, Ryland I, Kelly Y, Pearson MG. Clinical audit indicators of outcome following admission to hospital with acute exacerbation of chronic obstructive pulmonary disease. Thorax 2002; 57 (02) 137-141
  • 38 Keenan SP, Sinuff T, Burns KE. et al; Canadian Critical Care Trials Group/Canadian Critical Care Society Noninvasive Ventilation Guidelines Group. Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. CMAJ 2011; 183 (03) E195-E214
  • 39 Davidson AC, Banham S, Elliott M. et al; BTS Standards of Care Committee Member, British Thoracic Society/Intensive Care Society Acute Hypercapnic Respiratory Failure Guideline Development Group, On behalf of the British Thoracic Society Standards of Care Committee. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax 2016; 71 (Suppl. 02) ii1-ii35
  • 40 Ram FS, Picot J, Lightowler J, Wedzicha JA. Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2004; (03) CD004104
  • 41 Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 7: CD004104
  • 42 Confalonieri M, Potena A, Carbone G, Porta RD, Tolley EA, Umberto Meduri G. Acute respiratory failure in patients with severe community-acquired pneumonia. A prospective randomized evaluation of noninvasive ventilation. Am J Respir Crit Care Med 1999; 160 (5, Pt 1): 1585-1591
  • 43 Lindenauer PK, Stefan MS, Shieh MS, Pekow PS, Rothberg MB, Hill NS. Outcomes associated with invasive and noninvasive ventilation among patients hospitalized with exacerbations of chronic obstructive pulmonary disease. JAMA Intern Med 2014; 174 (12) 1982-1993
  • 44 Levy M, Tanios MA, Nelson D. et al. Outcomes of patients with do-not-intubate orders treated with noninvasive ventilation. Crit Care Med 2004; 32 (10) 2002-2007
  • 45 Schettino G, Altobelli N, Kacmarek RM. Noninvasive positive pressure ventilation reverses acute respiratory failure in select “do-not-intubate” patients. Crit Care Med 2005; 33 (09) 1976-1982
  • 46 Díaz GG, Alcaraz AC, Talavera JC. et al. Noninvasive positive-pressure ventilation to treat hypercapnic coma secondary to respiratory failure. Chest 2005; 127 (03) 952-960
  • 47 Scala R, Nava S, Conti G. et al. Noninvasive versus conventional ventilation to treat hypercapnic encephalopathy in chronic obstructive pulmonary disease. Intensive Care Med 2007; 33 (12) 2101-2108
  • 48 Michelet P, D'Journo XB, Seinaye F, Forel JM, Papazian L, Thomas P. Non-invasive ventilation for treatment of postoperative respiratory failure after oesophagectomy. Br J Surg 2009; 96 (01) 54-60
  • 49 Brochard L, Mancebo J, Wysocki M. et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1995; 333 (13) 817-822
  • 50 Conti G, Antonelli M, Navalesi P. et al. Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med 2002; 28 (12) 1701-1707
  • 51 Carrillo A, Ferrer M, Gonzalez-Diaz G. et al. Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186 (12) 1279-1285
  • 52 Nava S, Ambrosino N, Clini E. et al. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann Intern Med 1998; 128 (09) 721-728
  • 53 Ferrer M, Esquinas A, Arancibia F. et al. Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med 2003; 168 (01) 70-76
  • 54 Girault C, Bubenheim M, Abroug F. et al; VENISE Trial Group. Noninvasive ventilation and weaning in patients with chronic hypercapnic respiratory failure: a randomized multicenter trial. Am J Respir Crit Care Med 2011; 184 (06) 672-679
  • 55 Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive ventilation as a weaning strategy for mechanical ventilation in adults with respiratory failure: a Cochrane systematic review. CMAJ 2014; 186 (03) E112-E122
  • 56 Ferrer M, Sellarés J, Valencia M. et al. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: randomised controlled trial. Lancet 2009; 374 (9695): 1082-1088
  • 57 Plant PK, Owen JL, Elliott MW. Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet 2000; 355 (9219): 1931-1935
  • 58 Plant PK, Owen JL, Parrott S, Elliott MW. Cost effectiveness of ward based non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease: economic analysis of randomised controlled trial. BMJ 2003; 326 (7396): 956
  • 59 Barbé F, Togores B, Rubí M, Pons S, Maimó A, Agustí AG. Noninvasive ventilatory support does not facilitate recovery from acute respiratory failure in chronic obstructive pulmonary disease. Eur Respir J 1996; 9 (06) 1240-1245
  • 60 Plant PK, Owen JL, Elliott MW. One year period prevalence study of respiratory acidosis in acute exacerbations of COPD: implications for the provision of non-invasive ventilation and oxygen administration. Thorax 2000; 55 (07) 550-554
  • 61 Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010; 341: c5462
  • 62 Joosten SA, Koh MS, Bu X, Smallwood D, Irving LB. The effects of oxygen therapy in patients presenting to an emergency department with exacerbation of chronic obstructive pulmonary disease. Med J Aust 2007; 186 (05) 235-238
  • 63 O'Driscoll BR, Howard LS, Davison AG. British Thoracic Society. BTS guideline for emergency oxygen use in adult patients. Thorax 2008; 63 (Suppl. 06) vi1-vi68
  • 64 Antro C, Merico F, Urbino R, Gai V. Non-invasive ventilation as a first-line treatment for acute respiratory failure: “real life” experience in the emergency department. Emerg Med J 2005; 22 (11) 772-777
  • 65 Soo Hoo GW, Santiago S, Williams AJ. Nasal mechanical ventilation for hypercapnic respiratory failure in chronic obstructive pulmonary disease: determinants of success and failure. Crit Care Med 1994; 22 (08) 1253-1261
  • 66 Ambrosino N, Foglio K, Rubini F, Clini E, Nava S, Vitacca M. Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive pulmonary disease: correlates for success. Thorax 1995; 50 (07) 755-757
  • 67 Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L. SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 2001; 163 (04) 874-880
  • 68 Confalonieri M, Garuti G, Cattaruzza MS. et al; Italian noninvasive positive pressure ventilation (NPPV) study group. A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J 2005; 25 (02) 348-355
  • 69 Scala R, Bartolucci S, Naldi M, Rossi M, Elliott MW. Co-morbidity and acute decompensations of COPD requiring non-invasive positive-pressure ventilation. Intensive Care Med 2004; 30 (09) 1747-1754
  • 70 Papazian L, Corley A, Hess D. et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med 2016; 42 (09) 1336-1349
  • 71 Frat JP, Thille AW, Mercat A. et al; FLORALI Study Group, REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372 (23) 2185-2196
  • 72 Stéphan F, Barrucand B, Petit P. et al; BiPOP Study Group. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA 2015; 313 (23) 2331-2339
  • 73 Hernández G, Vaquero C, González P. et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA 2016; 315 (13) 1354-1361
  • 74 Hernández G, Vaquero C, Colinas L. et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA 2016; 316 (15) 1565-1574
  • 75 Nedel WL, Deutschendorf C, Moraes Rodrigues Filho E. High-flow nasal cannula in critically ill subjects with or at risk for respiratory failure: a systematic review and meta-analysis. Respir Care 2017; 62 (01) 123-132
  • 76 Zhao H, Wang H, Sun F, Lyu S, An Y. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis. Crit Care 2017; 21 (01) 184
  • 77 Maitra S, Som A, Bhattacharjee S, Arora MK, Baidya DK. Comparison of high-flow nasal oxygen therapy with conventional oxygen therapy and noninvasive ventilation in adult patients with acute hypoxemic respiratory failure: A meta-analysis and systematic review. J Crit Care 2016; 35: 138-144
  • 78 Roca O, Riera J, Torres F, Masclans JR. High-flow oxygen therapy in acute respiratory failure. Respir Care 2010; 55 (04) 408-413
  • 79 Spoletini G, Alotaibi M, Blasi F, Hill NS. Heated humidified high-flow nasal oxygen in adults: mechanisms of action and clinical implications. Chest 2015; 148 (01) 253-261
  • 80 Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care 2013; 58 (10) 1621-1624
  • 81 Sztrymf B, Messika J, Bertrand F. et al. Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study. Intensive Care Med 2011; 37 (11) 1780-1786
  • 82 Fraser JF, Spooner AJ, Dunster KR, Anstey CM, Corley A. Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: a randomised crossover trial. Thorax 2016; 71 (08) 759-761
  • 83 Atwood Jr CW, Camhi S, Little KC. et al. Impact of heated humidified high flow air via nasal cannula on respiratory effort in patients with chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis (Miami) 2017; 4 (04) 279-286
  • 84 Pisani L, Fasano L, Corcione N. et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax 2017; 72 (04) 373-375
  • 85 Vogelsinger H, Halank M, Braun S. et al. Efficacy and safety of nasal high-flow oxygen in COPD patients. BMC Pulm Med 2017; 17 (01) 143
  • 86 Bräunlich J, Köhler M, Wirtz H. Nasal highflow improves ventilation in patients with COPD. Int J Chron Obstruct Pulmon Dis 2016; 11: 1077-1085
  • 87 Pilcher J, Eastlake L, Richards M. et al. Physiological effects of titrated oxygen via nasal high-flow cannulae in COPD exacerbations: a randomized controlled cross-over trial. Respirology 2017; 22 (06) 1149-1155
  • 88 Spoletini G, Mega C, Pisani L. et al. High-flow nasal therapy vs standard oxygen during breaks off noninvasive ventilation for acute respiratory failure: a pilot randomized controlled trial. J Crit Care 2018; 48: 418-425
  • 89 Longhini F, Pisani L, Lungu R. et al. High-flow oxygen therapy after noninvasive ventilation interruption in patients recovering from hypercapnic acute respiratory failure: a physiological crossover trial. Crit Care Med 2019; 47 (06) e506-e511
  • 90 Kim ES, Lee H, Kim SJ. et al. Effectiveness of high-flow nasal cannula oxygen therapy for acute respiratory failure with hypercapnia. J Thorac Dis 2018; 10 (02) 882-888
  • 91 Yuste ME, Moreno O, Narbona S, Acosta F, Peñas L, Colmenero M. Efficacy and safety of high-flow nasal cannula oxygen therapy in moderate acute hypercapnic respiratory failure. Rev Bras Ter Intensiva 2019; 31 (02) 156-163
  • 92 Sun J, Li Y, Ling B. et al. High flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease with acute-moderate hypercapnic respiratory failure: an observational cohort study. Int J Chron Obstruct Pulmon Dis 2019; 14: 1229-1237
  • 93 Lee MK, Choi J, Park B. et al. High flow nasal cannulae oxygen therapy in acute-moderate hypercapnic respiratory failure. Clin Respir J 2018; 12 (06) 2046-2056
  • 94 Cortegiani A, Longhini F, Carlucci A. et al. High-flow nasal therapy versus noninvasive ventilation in COPD patients with mild-to-moderate hypercapnic acute respiratory failure: study protocol for a noninferiority randomized clinical trial. Trials 2019; 20 (01) 450