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Abstract Background and Objectives The penetration rate of physical examinations in China is
substantially lower than that in developed countries. Therefore, an auxiliary approach
that does not depend on hospital health checks for the diagnosis of metabolic
syndrome (MetS) is needed.
Methods In this study, we proposed an augmented method with inferred blood
features that uses self-care inputs available at home for the auxiliary diagnosis of MetS.
The dataset used for modeling contained data on 91,420 individuals who had at least 2
consecutive years of health checks. We trained three separate models using a
regularized gradient-boosted decision tree. The first model used only home-based
features; additional blood test data (including triglyceride [TG] data, fasting blood
glucose data, and high-density lipoprotein cholesterol [HDL-C] data) were included in
the second model. However, in the augmented approach, the blood test data were
manipulated using multivariate imputation by chained equations prior to inclusion in
the third model. The performance of the three models for MetS auxiliary diagnosis was
then quantitatively compared.
Results The results showed that the third model exhibited the highest classification
accuracy for MetS in comparison with the other two models (area under the curve
[AUC]: 3rd vs. 2nd vs. 1st¼ 0.971 vs. 0.950 vs. 0.905, p< 0.001). We further revealed
that with full sets of the three measurements from earlier blood test data, the
classification accuracy of MetS can be further improved (AUC: without vs. with¼ 0.971
vs. 0.993). However, the magnitude of improvement was not statistically significant at
the 1% level of significance (p¼ 0.014).
Conclusion Our findings demonstrate the feasibility of the third model for MetS
homecare applications and lend novel insights into innovative research on the health
management of MetS. Further validation and implementation of our proposed model
might improve quality of life and ultimately benefit the general population.
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Introduction

Metabolic syndrome (MetS) is a multimetabolic disorder
that can causehyperglycemia, hypertension, hyperlipidemia,
atherosclerosis, thrombosis, and inflammation.1,2 The most
serious clinical consequences ofMetS include type II diabetes
and cardiovascular disease, which is the leading cause of
death in China.3,4 MetS is also closely associated with multi-
ple types of cancer.5–10 Due to economic development and
lifestyle changes in the Chinese population, the prevalence of
MetS is increasing each year, and the age range of affected
patients has shown a significant decreasing trend compared
with that of previous years.11,12

Regular medical examination has provided an avenue for
discovery and risk reduction in MetS.13 However, a low
national coverage rate of medical examinations (32.75% in
2016) has been reported in China,14 and there are serious
problems regarding insufficient and unevenly distributed
medical resources.15 Since the increasing prevalence of MetS
places increasing pressure on economic development and
social health protection policies, the improvement and diver-
sification of MetS examinations should be explored.

Several studies were performed to lower the threshold of
self-management for MetS. Ichikawa et al and Shimoda
et al16–18 proposed prediction models for identifying health
guidance candidates. This method identifies a health guid-
ance candidate using available electronic health records,
including demographic information (sex, age, height, and
weight), and examination results (blood pressure and levels
of blood test indexes). However, the method, which relies on
clinical data, is not highly applicable to China’s national
conditions given people’s reduced awareness of medical
examinations. In such scenarios, a home-based approach
to monitoring MetS is needed.

Blood test data (e.g., triglyceride [TG] data) are necessary
for the diagnosis of MetS. However, blood test data are
unavailable at home, which makes self-diagnosis of MetS
difficult. There is a correlation between certain blood test
measurements and home-basedmeasurements.19 By using a
large amount of health check-up data, the relationship
between blood test data and home-measurable data may
be helpful for predicting appropriate blood test data and can
thus contribute to MetS auxiliary diagnosis.

We proposed a novel augmented method with inferred
blood features based on a large amount of health check-up
data for MetS self-care to compensate for the lack of blood
test data in MetS self-care. Our model ensures timely, con-
venient, and accurate MetS risk assessment in the context of
low national medical examination penetration rates, which
could be significant for improving the quality of national
health.

Methods

Data Source
Datawere collected from the health inspection database of the
First Affiliated Hospital, Medical School of Zhejiang University.
The database contained data from 295,241 physical examina-

tions performed between January 2011 and September 2017.
The data include the sex, age, history, medication history,
lifestyle records,height,weight, bodymass index, systolicblood
pressure (SBP), anddiastolicbloodpressure (DBP)ofpatients, as
well as the following blood test data: fasting blood glucose
(FBG), TG levels, andhigh-density lipoprotein cholesterol (HDL-
C). The scope of the health check targets includes public
institutions, government agencies, private companies, etc.,
without restrictions on sex or age. The baseline data were
generated from the first health check of this population, which
excluded patients with baseline coronary heart disease, type I
diabetes, and familial hyperlipidemia.

A total of 96,506 people had at least 2 consecutive years of
complete health check data. Among them, 15,984 (16.6%)
had MetS the first year, and 17,060 (18.7%) had MetS the
following year. Of these individuals, 5,086 (who converted to
non-MetS the following year) were not included in the study.
Therefore, 91,420 individuals were included, among whom
10,898 had MetS at baseline and 6,162 converted from non-
MetS to MetS.

►Table 1 lists the demographic and clinical characteristics
of the study population at baseline and the following year.
Among them, 47,098weremales, accounting for 51.5% of the
total sample. The average age of the individuals was 43.7
years. Compared with the first year, all features deteriorated
slightly on average the following year (body mass index
[BMI], systolic blood pressure [SBP], diastolic blood pressure
[DBP], FBG, and TG were higher; HDL-C was lower).

We set up positive samples for people who were diag-
nosed with MetS the following year. ►Fig. 1 shows the
distribution of the densities of the various indicators in the
positive and negative samples. We observed significant
differences between the positive samples and the negative

Table 1 Characteristics of the datasets

Variable n¼ 91,420

Previous
year

Subsequent
year

Mean age (SD) 43.7 (14.0)

Percentage of male
participants
(total number)

51.5 (47,098)

Percentage of non-MetS
patients (total number)

88.1%
(80,522)

81.3% (74,360)

Percentage of MetS
patients (total number)

11.9%
(10,898)

18.7% (17,060)

Mean BMI (SD) 22.8 (3.1) 22.9 (3.2)

Mean SBP (SD) 121.1 (16.6) 122.3 (16.8)

Mean DBP (SD) 74.0 (10.4) 74.4 (10.7)

Mean FBG (SD) 4.92 (0.90) 4.97 (0.96)

Mean TG (SD) 1.297 (0.879) 1.358 (0.923)

Mean HDL-C (SD) 1.335 (0.344) 1.323 (0.347)

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure;
FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol;
MetS, metabolic syndrome; SBP, systolic blood pressure; SD, standard
deviation; TG, triglyceride.
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samples with respect to the distribution of the inspection
indicators, which demonstrated that the health check indi-
cators of the dataset in the baseline year were significantly
related to future diagnosis of MetS.

In this study, the diagnosis of MetSwas based on the new
MetS definition criteria that were jointly developed by
the 2009 guidelines of the International Diabetes Federation
and the American Heart Association/National Heart, Lung
and Blood Institute.20 The criteria are primarily employed to
assess the risk of obesity (BMI or waist circumference) and
cardiovascular risk (SBP, DBP, FBG, TG, and HDL-C). We used
BMI as an assessment of obesity risk. The latest study
published in Metabolism reported that the use of BMI to
evaluate MetS risk is equivalent to the use of waist circum-
ference. In other words, the use of BMI to evaluate MetS risk
has greater clinical potential than the use of waist
circumference.21

Based on the analysis of the population data, several
methods were utilized for data processing. ►Fig. 2 displays
a map of the research workflow.

Data Preprocessing

Standardization
To improve the comparability among the feature indexes and
the convergence speed and data processing performance, we
applied the Z-score standardization method to normalize
each continuous variable.22 Thismethod normalizes the data
based on the mean and standard deviation (SD) of the raw
data. Z-scores have a mean of zero and a SD of one; they are
informative when the empirical distribution is close to a
normal distribution. In such cases, Z-scores may be used to
compare relative locations of values from distributions with
different means or SDs.

Sample Balance
A serious class imbalancewas observed in the dataset, and the
number of patientswho hadMetS the following year (18.7% of
the total) was significantly smaller than the untransformed
population. To prevent deviations in the results and improve
the results,we employed the syntheticminority oversampling
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Fig. 1 (A–F) Density map for BMI, DBP, SBP, FBG, TG and HDL-C for positive and negative MetS samples. BMI, body mass index; DBP, diastolic
blood pressure; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; MetS, metabolic syndrome; SBP, systolic blood
pressure; TG, triglyceride.
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Fig. 2 Map of the research process. AUC, area under the curve; ACC, accuracy; MICE, multivariate imputation by chained equations; SMOTE,
synthetic minority oversampling technique.
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technique (SMOTE) to solve the problem of unbalanced cate-
gorical data.23

The SMOTE is an improved oversampling technique that is
based on a random oversampling algorithm. The main idea is
to use the similarity among the fewexisting classes of samples
in the feature space to create artificial data. Thebasic principle
is to use Eq. (1) to linearly interpolate between the closely
spaced samples of the minority class to generate a new
minority sample. For each sample from the minority class
(x), five samples from the minority class with the smallest
Euclidean distance from the original sample were identified
(nearest neighbors), and one of them was randomly chosen
(xNN). Because the data constructed by the algorithm is a new
sample that does not exist in the original dataset, the risk of
overfitting to the minority-class data is minimized.24

where u was randomly chosen from U(0,1). u was the same
for all variables but differed for each SMOTE sample; this
guarantees that the SMOTE sample lies on the line joining the
two original samples used to generate it.

A randomly sampled dataset that represents one-fifth of
the data was employed as a test dataset. Of the remaining
data, four-fifthswere subsampled as the training dataset, and
the rest were used for validation. The training dataset con-
sisted of 58,509 people, the validation dataset consisted of
14,627 people, and the test dataset consisted of 18,284
people. To improve the performance of the classifier, we
used the SMOTE implementation from the DMwR package25

of R software (version 3.4.3) to oversample the unbalanced
training dataset. After SMOTE oversampling, 69,335 training
samples, of which 21,838were positive samples (31.5% of the
total), were obtained.

Features
To understand the impact of existing health check indicators
on the development of MetS, we generated a regularized
gradient-boosted decision treemodel using eXtremeGradient
Boosting (XGBoost) to estimate the importance of the model
features, which indicates how useful or valuable each feature
was in the construction of the boosted decision trees within
themodel. Themore an attribute is used tomakekey decisions
with decision trees, the higher its relative importance. Impor-
tance is calculated for a single decision treeby the amount that
each attribute split point improves the performance measure,
weighted by the number of observations the node is responsi-
ble for. The performance measure may be the purity (Gini
index) used to select the split points or another more specific
error function. The feature importance scores are then aver-
aged across all of the decision trees within the model.

By estimating the feature importance, we obtain three
indicators: Gain, Cover, and Frequency. Features are classi-
fied by Gain. Gain is the improvement in accuracy brought by
a feature to the branches it is on. Cover measures the relative
quantity of observations related to a feature. Frequency is a
simpler way to measure the Gain. It counts only the number
of times a feature is used in all generated trees.

Features included sex, age, BMI, SBP, DBP, TG, FBG, and
HDL-C of the previous year and BMI, SBP, and DBP of the
subsequent year, which were referred to as body mass index
of the subsequent year (BMI_L), systolic blood pressure of the
subsequent year (SBP_L), and diastolic blood pressure of the
subsequent year (DBP_L). Positive samples were patients
who were diagnosed with MetS in the subsequent year.
The inputswere thehealth check indicators for 2 consecutive
years of the study population. The output was the diagnosis
of MetS in the subsequent year. We calculated the impor-
tance of the features to assess the extent to which these
features (2-year home-based data and blood test data)
affected the classification of MetS. ►Fig. 3 and ►Table 2

present the prioritization of each feature in the model.
As shown, the contributionofBMI_L to theoutcomeofMetS

was the largest, and the third largest was SBP_L,which reflects
that the features of the subsequent year are important to the

DBP
Age
Sex

BMI
DBP_L

SBP
HDL−C

FBG
SBP_L

TG
BMI_L

0.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.4

Fig. 3 Order of importance of the model features. BMI, body mass
index; DBP, diastolic blood pressure; FBG, fasting blood glucose; HDL,
high-density lipoprotein; MetS, metabolic syndrome; SBP, systolic
blood pressure; TG, triglyceride.

Table 2 Model feature importance

Feature Gain Cover Frequency

BMI_L 0.408 0.190 0.106

TG 0.199 0.149 0.124

SBP_L 0.131 0.113 0.080

FBG 0.081 0.140 0.129

HDL-C 0.080 0.086 0.139

SBP 0.026 0.062 0.088

DBP_L 0.022 0.075 0.077

BMI 0.021 0.089 0.113

Sex 0.018 0.031 0.029

Age 0.007 0.034 0.060

DBP 0.007 0.032 0.055

Abbreviations: BMI-L, body mass index of the subsequent year; DBP,
diastolic blood pressure; DBP-L, diastolic blood pressure of the subse-
quent year; FBG, fasting blood glucose; HDL-C, high-density lipoprotein
cholesterol; SBP, systolic blood pressure; SBP-L, systolic blood pressure
of the subsequent year; TG, triglyceride.

Methods of Information in Medicine Vol. 59 No. 1/2020

Self-diagnosis of Metabolic Syndrome Zhou et al.22

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



current recognition. The blood test indexes of the previous
year (TG, HDL-C, and FBG) comprise the next largest contribu-
tion, which means that historical blood test data are relatively
important for the outcome of MetS.

Themean and SD of the BMI and BMI_L shown in►Table 2

are similar; however, the importance of these two features is
significantly different, as shown in►Fig. 3. We calculated the
differences between the BMI_L and BMI for all individuals
and performed a t-test with the differences and the value
zero. The resulting p-value is 0.022; therefore, the difference
between the 2-year BMI and zero is statistically significant at
the 5% level of significance. This result shows that for the
same individual, the BMI in year 1 does not fully reflect the
BMI_L in year 2 (►Table 3).

Clinical Feature Augmented Model
It is possible to evaluate the risk of MetS in the following year
by using only home-based data; however, blood test data
contribute to MetS diagnosis (►Fig. 3). The substantial
importance of the data from the three blood tests has become
an important basis for us to interpolate the data from the
three blood tests. Therefore, in our proposed method
(►Fig. 4C), inferred blood test data could be helpful as
supplementary data.

The goal is to evaluateMetS risk in the following year based
ontheabsenceofahealthcheck-up(i.e., nobloodtestdata).We
aim to use a large amount of health check-up data to obtain a
model that can predict blood test data by learning the rela-
tionship between home-based data and blood test data to
provide additional effective features for the final classification
model. The augmentedmodel consists of two steps. In thefirst
step, blood test features are inferred by the multivariate
imputation by chained equations (MICE).26 In the second
step, the results obtained from the first step are combined
with the home-based data for the modeling of MetS by using
the regularized gradient-boosted decision tree algorithm.27

MICE
MICE is a practical approach to creating imputed datasets
based on a set of imputation models, with one model for

each variable with missing values. MICE is an increasingly
popular method of performing multiple imputations. Here,
we outlined the MICE algorithm for a set of variables, x1, ...,
xk, some or all of which have missing values. Initially, all
missing values are filled in at random. The first variable (say
x1) with missing values is regressed on all other variables x2,
..., xk The estimation is restricted to individuals with ob-
served x1 Missing values in x1 are replaced by simulated
draws from the posterior predictive distribution of x1, an
important step known as proper imputation. Next, x2 with
missing values is regressed on all other variables x1, x3, ..., xk
and using the imputed values of x1. Again, missing values of
x2 are replaced by draws from the posterior predictive
distribution of x2. The process is repeated in turn; one
such round is called a cycle. The procedure is repeated for
several cycles to produce a single imputed data point to
stabilize the results, and the whole procedure is repeated
independentlym times to givem imputed data points. MICE
has the ability to handle different variable types (continu-
ous, binary, unordered categorical, and ordered categorical)
as each variable is imputed using its own imputation
model.28 Compared with k-nearest neighbors interpolation
and recursive partitioning and regression tree interpola-
tion, the MICE interpolation method has better flexibility
and higher precision. We applied the MICE package in R to
perform interpolation.

Regularized Gradient-Boosted Decision Tree
The regularized gradient-boosted decision tree algorithm is
an algorithm implemented by XGBoost.29 Compared with
the traditional gradient boosting decision tree algorithm, the
regularized gradient-boosted decision tree method adds a
regularization term helping to smooth the final learned
weights to reduce the risk of overfitting. The regularized
objective tends to choose a model that employs simple and
predictive functions. The objective function consists of a loss
function and complexity, which limits the number of leaves
and prevents overfitting to some extent; the function is
defined as

where .

Here, i is the sample id, k is the tree id (number of rounds),
represents the prediction error of the ith sample, ΣkΩ

(fk) penalizes the complexity of the tree, T is the number of
leaf nodes, and ω is the value of the node. When the
regularization parameter is set to zero, the objective will
fall back to the traditional gradient tree boosting.

The tree ensemble model in Eq. (2) includes functions as
parameters and is trained in an additive manner. For each
iteration, the training objective function of a tree can be
written as

where is the prediction of the ith instance at the t� 1
iteration, which is employed to fit the residual f(x). The

Table 3 Variables of each model

Model Variables

HOME sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L

RBTIBE sex, age, BMI, SBP, DBP, BMI_L, SBP_L,
DBP_L, TG, HDL-C, FBG

IB Step 1: sex, age, BMI, SBP, DBP, BMI_L,
SBP_L, DBP_L

Step 2: sex, age, BMI, SBP, DBP, TG (inferred),
HDL-C (inferred), FBG (inferred), BMI_L,
SBP_L, DBP_L

Abbreviations: BMI-L, body mass index of the subsequent year; DBP,
diastolic blood pressure; DBP-L, diastolic blood pressure of the subse-
quent year; FBG, fasting blood glucose; HDL-C, high-density lipoprotein
cholesterol; SBP, systolic blood pressure; SBP-L, systolic blood pressure
of the subsequent year; TG, triglyceride.
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objective function is approximated by Taylor’s second-order
expansion as follows:

where and
are the first- and second-order gradient statistics on the loss
function.

In addition to the regularized objective, shrinkage and
column subsampling are used to further prevent overfitting.

Model Generation
As shown in ►Fig. 4C, during the training phase of the
augmented model with inferred blood features (abbreviated
as IB), the original training datawere subsampled into 10 equal
parts. Each time, nine complete parts were used to interpolate
the blood test data for the one remainingmissing part. After 10

imputations, all datasets had inferred blood test values. MICE
was used to imputeblood test data fromhome-based data, and
the inferred results were provided to the regularized gradient-
boosted decision tree algorithm as additional features. In the
testing phase, only home-based features were used in the test
dataset, and blood test datawere inferred by the samemethod.
The prediction of the blood test data using MICE in the test
dataset utilized apriori knowledgeof the large trainingdataset.

We compared the performance of IB with those of two
other models. One model (abbreviated as HOME) was given
only the home-based features (►Fig. 4A), and the other
(abbreviated as RBTIBE) was trained with extra blood test
data (►Fig. 4B). The augmented model and the two other
models were compared.

In addition to the HOME model, another baseline model
could be the one that includes only features from year 1.
However, themain goal of thiswork is to provide a continuous

Fig. 4 (A–C) Block diagram for the three models.
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self-assisteddiagnosis ofMetS, sowedid not useprevious data
to predict the risk of developing MetS in the future. Therefore,
we chose HOME as the baseline model, which continuously
uses the latest physiological data (BMI, SBP, and DBP) as the
input. Furthermore, the IB model proposed here also requires
the latest physiological data to infer the blood features for
modeling; therefore, for a consistency comparison, the HOME
model was selected as the baseline model.

HOME contained home-based variables (sex, age, BMI,
SBP, DBP, BMI_L, SBP_L, and DBP_L) and used only home-
based variables to directly train the regularized gradient-
boosted decision tree model to achieve a MetS auxiliary
diagnosis, while RBTIBE was trained using additional true
blood test data (TG, HDL-C, FBG); accordingly, the three
features missing from the test dataset were interpolated
using MICE. IB consisted of two steps: step 1 used home-
based variables (sex, age, BMI, SBP, DBP, BMI_L, SBP_L, and
DBP_L) to predict blood test data (TG, HDL-C, FBG), and step 2
merged the home-based variables and the inferred values
from thefirst step forMetSmodeling. Comparedwith HOME,
the differencewas that the trainingdata had additional blood
test data; compared with RBTIBE, the differencewas that the
inferred blood test features were used for regularized gradi-
ent-boosted decision tree training rather than real blood test
features. Tenfold cross-validation was applied in the boost-
ing part of the three models for parameter adjustment and
selection, which ensured the reliability of area under the
curve (AUC) and limited overfitting to some extent.

Our purpose is to achieve a better model for MetS self-
care. Blood test data are unavailable at home; therefore, the
three models were generated to compare their performance
using a test dataset that contains only home-based data.

In the regularized gradient-boosted decision tree model,
parameteroptimizationwasperformedusingagridsearch.The
parameters were general parameters, booster parameters, and
taskparameters.Wechosea relativelyhigh learning speed (0.3)
and the optimal numberof trees based on the selected learning
rate. We prioritized tree-specific parameters (max_depth,
min_child_weight, gamma, subsample, colsample_bytree) for

decided learning rate and number of trees. Tune regularization
parameters (lambda, α) were optimized to help reduce model
complexity and enhance performance. Then, we lowered the
learning rate and decided the optimal parameters. ►Table 4

lists the final classifier parameter values.

Evaluation Metrics
The AUC, sensitivity (true positive rate, TPR), specificity (true
negative rate, TNR), precision (positive predictive value, PPV),
negative predictive value (NPV), accuracy (ACC), F1 score, and
theareaunder theprecision-recall curve (AUPRC)wereused to
evaluate the predictive performance of the three models. In
predictive analytics, the number of false positives, false neg-
atives, true positives, and true negatives in a confusionmatrix
are written relatively as FP, FN, TP, and TN, respectively. The
calculation formulas of the evaluation metrics are as follows:

The receiver operating characteristic (ROC) curve30 is plotted
with the TPR as the ordinate and the false positive rate as the
abscissa, which is often used to evaluate the merits of a
binary classifier. The precision—recall (PR) graph31 takes
precision as the ordinate and recall as the abscissa, which
visually shows the recall and precision of the learner on the
sample.

Results

Model Comparison
In the first step of the augmented model, our goal was to
obtain the lowest root mean square error (RMSE) for each of
the predicted metrics using the strategy. ►Table 5 lists the
RMSE and mean absolute percentage error of MICE.

Table 4 Parameters of the regularized gradient boosted
decision tree model

Parameter Model

HOME RBTIBE IB

nrounds 100 100 100

booster gbtree gbtree gbtree

objective reg:logistic reg:logistic reg:logistic

eta 0.1 0.1 0.1

gamma 0.6 0.5 0.4

max_depth 6 6 6

max_delta_step 0 0 0

min_child_weight 1 1 1

subsample 0.9 0.9 0.8

colsample_bytree 0.5 0.7 0.8

Table 5 Interpolation effect of the MICE method

Interpolation accuracy TG HDL-C FBG

RMSE 0.0693 0.0734 0.0763

MAPE 0.0173 0.0267 0.0276

Abbreviations: FBG, fasting blood glucose; HDL-C, high-density lipo-
protein cholesterol; MAPE, mean absolute percentage error; MICE,
multivariate imputation by chained equations; RMSE, root mean square
error; TG, triglyceride.
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Calculations of the AUC, sensitivity (TPR), specificity
(TNR), precision (PPV), NPV, ACC, F1 score, and AUPRC of
the three models are shown in ►Table 6. All metrics were
computed at the same threshold of 0.425. We obtained the
performance of the test dataset in the model by ROC curve
(►Fig. 5A) and PR graph (►Fig. 5B).

The AUC value of the test dataset reflects the total discrimi-
nativepowerof theclassifier.32Asshownin►Table 6, theAUCs
ofHOMEandRBTIBE are 0.905 (95%CI: 0.902–0.907) and0.950
(95%CI: 0.949–0.951), respectively. The total performance of
RBTIBE is greater than that of HOME (p< 0.001), which
indicates that RBTIBE has higher reliability and accuracy.

Furthermore, the performance of each indicator of IB is
better than that of RBTIBE (AUC: 0.971 vs. 0.950, p< 0.001;
ACC: 0.920 vs. 0.901; F1: 0.800 vs. 0.753; AUPRC: 0.917 vs.
0.842), confirming the advantage of the blood test data
imputation in the training process. In the prediction of
true positives, recall was increased to a value of 0.859
(RBTIBE: 0.809), meaning that IB has a better precise posi-
tioning rate and a lowermissing rate for people at high riskof
MetS. Additionally, the precision in the test dataset wasmore
satisfying, and the specificity was improved from 0.922 to
0.935, which reflects the improved correct recognition rate
for patients at low risk of MetS of IB.

The performance improvement of IB comparedwith HOME
was due to the input of additional inferred blood test features,
which are important factors in the diagnosis of MetS, in both
the training and testing processes. Interestingly, the only
difference between RBTIBE and IB is that during the training
process, IB used the inferred blood test features for the regu-

larized gradient-boosted decision tree model instead of the
actualblood test featuresused inRBTIBE. Toourknowledge, the
inferred blood testdataderived fromthe sameMICEmethod in
both the training and testing processes in IB may have had
better data consistency and lower estimation bias than, respec-
tively using the actual blood test data in training process and
inferred data in the testing process in RBTIBE, thereby optimiz-
ing the training model and improving the performance in IB.

Multiscene Model Analysis
Some of the blood test information provided could be useful
for improving the performance of the augmented model if
the patient has undergone a physical examination in the
previous year.We developed seven extra-augmentedmodels
(IB1–IB7) for different scenarios to evaluate the applicability
of our augmented method. ►Table 7 lists the scenarios and
the corresponding models. The performances are shown
in ►Table 8 and ►Fig. 6.

As shown in►Table 8, the seven augmentedmodels in the
scenarios all demonstrate good predictive performance, and
the performance of the augmented models could be further
improved if more detailed blood test data could be obtained,
i.e., AUC varied from 0.979 to 0.993. That is, the augmented
method is also suitable when previous blood test data are
provided and guarantee excellent performance in terms of
home-basedMetS auxiliary diagnosis. If a person canprovide
extra blood test results from physical examinations for self-
care, the model will show even better predictive perfor-
mance. However, the performance of the best model (IB7) did
not differ significantly from that of IB (p< 0.014).

Table 6 Performance of the three models

Model AUC 95%CI Sensitivity Specificity Precision NPV F1 ACC AUPRC p-Value of AUC

HOME 0.905 0.902–0.907 0.702 0.897 0.609 0.929 0.652 0.860 0.703 <0.001

RBTIBE 0.950 0.949–0.951 0.809 0.922 0.705 0.955 0.753 0.901 0.842 Na

IB 0.971 0.970–0.971 0.856 0.935 0.751 0.966 0.800 0.920 0.917 <0.001

Abbreviations: AUC, area under the curve; ACC, accuracy; AUPRC, area under the precision-recall curve; CI, confidence interval; IB, inferred blood
features; NPV, negative predictive value.
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Fig. 5 (A) ROC curves of the three classifiers. (B) Precision-recall graphs of the three classifiers. ROC, receiver operating characteristic.
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Discussion

The main purpose of our proposed model is to provide a
ubiquitous self-diagnosis approach to MetS for self-care in
the context of low physical examination awareness of individ-
uals inChina. Therefore, in theapplicationscenarios, themodel
must support the smallest amount of input data that can be

acquired at home. However, the recall of HOME (0.702) with
home-based inputs did not satisfy the availability for MetS
self-diagnosis and management. Thus, we took the blood test
data into considerationtoenrich features (RBTIBE)andutilized
the MICE method to impute the blood test data instead of the
rawdata (IB); thus,our studyprovidesnewideas for innovative
research in health management.

Table 7 Different scenarios of the augmented models

Model Measured variables Inferred variables in step 1

IB sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L TG, HDL-C, FBG

IB1 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L TG, HDL-C

IB2 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L HDL-C, FBG

IB3 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L TG, FBG

IB4 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L HDL-C

IB5 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L TG

IB6 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L FBG

IB7 sex, age, BMI, SBP, DBP, BMI_L, SBP_L, DBP_L none

Abbreviations: BMI, bodymass index; BMI-L, bodymass index of the subsequent year; DBP, diastolic blood pressure; DBP-L, diastolic blood pressure of
the subsequent year; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; IB, inferred blood features; SBP, systolic blood
pressure; SBP-L, systolic blood pressure of the subsequent year; TG, triglyceride.

Table 8 Performance of IB in different scenarios

Model AUC 95% CI Sensitivity Specificity Precision NPV F1 score AUPRC ACC

IB 0.971 0.970–0.971 0.856 0.935 0.751 0.966 0.800 0.917 0.920

IB1 0.979 0.978–0.979 0.881 0.943 0.779 0.972 0.827 0.934 0.931

IB2 0.984 0.983–0.984 0.899 0.949 0.801 0.976 0.847 0.947 0.940

IB3 0.980 0.979–0.980 0.882 0.944 0.782 0.972 0.828 0.938 0.932

IB4 0.987 0.987–0.987 0.910 0.953 0.815 0.979 0.860 0.958 0.945

IB5 0.982 0.981–0.982 0.887 0.946 0.791 0.973 0.836 0.945 0.935

IB6 0.986 0.986–0.986 0.906 0.952 0.814 0.978 0.857 0.958 0.944

IB7 0.993 0.993–0.993 0.941 0.961 0.848 0.986 0.892 0.976 0.958

Abbreviations: AUC, area under the curve; ACC, accuracy; AUPRC, area under the precision-recall curve; IB, inferred blood features; CI, confidence
interval; NPV, negative predictive value.
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Fig. 6 (A) ROC curves of the classifiers. (B) Precision-recall graphs of the classifiers. ROC, receiver operating characteristic.
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Among the three models, the performance of RBTIBE was
much better than that ofHOME,which implies the importance
of blood test data for the auxiliary diagnosis of MetS. Further-
more,we developed an augmentedmodel (IB) that uses a large
amount of physical examination data to predict the blood test
items insteadofusing real bloodtestdata.Concretely, theMICE
methodwas used to learn the relationship between blood test
data and home-based datawithin the context physical exami-
nation data, and the output was used in the second step to
develop a better predictive performance model. As shown
in ►Table 6, the AUC, ACC, F1 score, and AUPRC of IB were
better than those of RBTIBE,which confirmed theadvantage of
the blood test data imputation in the training process. The
superior results in IB showed that our model, which is con-
structed from existing health check-up data, may have the
ability to provide MetS self-diagnosis and promote health
management, verifying the availability of the augmented
method and the feasibility of MetS self-diagnosis. In addition,
the recall of IB was 0.856, which embodies the model’s good
ability to recognize MetS patients in the second year. The
ability of the augmented model to identify the at-risk MetS
population is acceptable, especially for the minority who
developed MetS in the second year.

Since prevention and treatment of MetS have become a
global issue,20 several algorithmic approaches have already
been applied to various aspects of MetS care, including the
findings of associated risk factors,33–38 prediction of compli-
cations,39,40 and large-scale factors such as managing health
caresystems.41,42 Inparticular, several studieshavefocusedon
the early prediction or diagnosis ofMetS and demonstrated its
clinical significance,16,17,43 and several efforts havebeenmade
to improve the performance of models.18,44 Several effective
machine learning methods proposed by Akihiro Shimoda and
Daisuke Ichikawa could immediately obtain an accurate diag-
nosis of MetS and determine the candidates for health guid-
ance by using an individual’s historical medical examination
data.16–18A primarymotivation for our study, however, is that
despite these efforts, a home-based auxiliary diagnosis meth-
od for MetS would be more versatile and more valuable in
China because of the low rate of participation in physical
examinations. Moreover, for the test dataset with only
home-based data (missing important blood test data), our
goal was to use the augmented method with inferred blood
features to obtain an effective model with good performance.

The implementation of our method could guarantee that
the self-diagnosis of MetS is not limited by time or place and
ensures effective self-care. Compared with the MetS models
in a recent study,16 the convenience of a MetS auxiliary
diagnosis at home can increase the frequency and perfor-
mance of MetS self-examination, which could ameliorate
China’s national health check-up conditions. A variety of
studies attempted to achieve more effective self-manage-
ment to improve health.45–47 The ubiquitous auxiliary diag-
nostic approach could substantially improve the national
health level based on the following: (1) the precise prediction
plays an important role in the enhancement of people’s
health awareness, which helps people have a clear under-
standing of their health condition and engage in better self-

care behaviors, such as targeted treatments and avoiding
blind medication. An increase in disease awareness is
helpful in reducing the risk of disease; (2) our method
enhances the awareness of MetS and encourages high-risk
patients to go to the hospital for further examinations; and
(3) considering the population with physical examination
habits, our model helps to ensure their healthy self-man-
agement in daily life.

Limitations

However, this research has some limitations.
Due to the lack of some information (such as surgical

records, medications, procedures, etc.), we deleted some of
the original dirty data to focus on the identification of the
occurrence and development of MetS but not MetS improve-
ment. Future studies with more angular data could integrate
more effective features and information to improve the
generalization ability of the model.

The level of economic growth explains the geographic
variation in the prevalence of MetS. Due to differences in GDP
levels in different regions, the prevalence of MetS varies from
region to region. The validation results of our model are
applicable only to people in developed areas such as Hangzhou,
Zhejiang province, China, and can hardly be generalized to
populations in other regions. In the future, we will focus on
collecting more types of population data for modeling and
expanding the generalizability of the model.

Our data are from the hospital database in the First
Affiliated Hospital, Medical School of Zhejiang University,
which indicates that themajority of the population resides in
the same region. This represents the limited scope of our
model. In future research, additional data from multiple
hospitals in different regions that represent different eco-
nomic levels and medical services should be explored to
detect the relationships among different data sources and
establish models for a broader range of people.

In addition, the verification results of our model have not
yet been proven. Some long-term follow-up studies may be
implemented to verify the validity of the risk assessment
model and refine and improve the model.

Conclusion

In this study, we proposed a novel augmented method to
provide useful complementary variables for home-based
MetS auxiliary diagnosis. This method provides novel ideas
for promoting innovative research on health management in
MetS. Further validation and widespread application of the
augmentedmodels could be beneficial to the achievement of
self-care among individuals at risk of MetS and other chronic
diseases through early prevention and intervention, which
substantially improve the physical fitness of such individuals
and benefit the general population.

Note
Human and/or animal subjects were not included in the
project.
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