Hypercoagulation and Antithrombotic Treatment in Coronavirus 2019: A New Challenge

Francesco Violi1 Daniele Pastori1 Roberto Cangemi2 Pasquale Pignatelli1 Lorenzo Loffredo1©

1 Department of Clinical, Internal Medicine, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy
2 Department of Translational and Precision Medicine, Sapienza University of Rome, Italy

Address for correspondence Francesco Violi, MD, I Clinica Medica, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy (e-mail: francesco.violi@uniroma1.it).

Introduction

The novel coronavirus 2019 (COVID-19) is clinically characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for a high number of patients needing mechanical ventilation or intensive care units treatment and for the elevated mortality risk. A link between COVID-19 and multiorgan failure may be dependent on the fact that most COVID-19 patients are complicated by pneumonia, which is known to be associated with early changes of clotting and platelet activation and artery dysfunction; these changes may implicate in thrombotic-related events such as myocardial infarction and ischemic stroke. Recent data showed that myocardial injury compatible with coronary ischemia may be detectable in SARS-CoV-2 patients and laboratory data exploring clotting system suggest the presence of a hypercoagulation state. Thus, we performed a systematic review of COVID-19 literature reporting measures of clotting activation to assess if changes are detectable in this setting and their relationship with clinical severity. Furthermore, we discussed the biologic plausibility of the thrombotic risk in SARS-CoV-2 and the potential use of an antithrombotic treatment.

Abstract

The novel coronavirus 2019 (COVID-19) is clinically characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for a high number of patients needing mechanical ventilation or intensive care units (ICU) treatment and for the elevated mortality risk. A link between COVID-19 and multiorgan failure may be dependent on the fact that most COVID-19 patients are complicated by pneumonia, which is known to be associated with systemic inflammation and thrombotic-related events such as myocardial infarction (MI) and ischemic stroke.1,2 Accordingly, previous studies reported that patients with pneumonia display changes of clotting and platelet activation,3,4 which occur during the early phase of disease and may precipitate systemic or local thrombosis. It is arguable, therefore, that SARS-CoV-2 patients may experience thrombotic events in coronary and cerebral trees or in other circulatory districts including lung and kidney. Clinical data so far reported are suggestive of vascular complications occurring in the coronary circulation while the involvement of other districts is still unclear.5–7 Conversely, there are many studies reporting that the behavior of clotting variables and platelet count in COVID-19 patients is suggestive of a hypercoagulation state.

Keywords

► thrombosis
► hypercoagulability
► infectious diseases

© 2020 Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0340-6245.
Clotting Changes in Coronavirus 2019

We analyzed some variables of clotting and fibrinolysis activation along with platelet count in all COVID-19 population (Table 1) and in patients according to disease severity (Table 2). The latter was defined as acute respiratory distress syndrome (ARDS), need of mechanical ventilation/ICU treatment, nonsurvivor patients, or severe pneumonia.9–17 Our analysis considered globally nine reports.9–17

D-Dimer

D-dimers values were reported in all (9–12 and 14–17) but one study13 and definition of increased values in six out of eight studies.9,10,12,15–17 Among the six studies, one17 reported only the percentage of patients with increased values of D-dimer while the other reported also the absolute values. The percentage of patients with elevated D-dimer was almost wide with high values ranging from 14 to 46%. Analysis of D-dimer according to disease severity was reported in six studies (Table 2), and all consistently showed increased values of D-dimer in patients with severe versus nonsevere disease; significance was shown in all but two studies.14,17 These data are in accordance with a recent meta-analysis showing enhanced D-dimer according to disease severity.18

Platelet Count

Platelet count data were extrapolated from seven studies,9–13,16,17 of which six9,12,16,17 reported changes in terms of low platelet count. Reduced platelet count was detected from 5 to 18% of the entire population; platelet count was roughly around 100,000 μL and in some cases below this value. The impact of disease severity on platelet count was reported in five studies11–13,16,17 with a significant reduction in nonsurvivors compared with survivors; however, a trend toward a reduction of platelet count in patients with severe disease was reported in all studies, which is in accordance with a previous report showing that thrombocytopenia is more frequent in patients with severe disease.19

Prothrombin Time

We extrapolated data from eight (9–16) studies, but only five9,10,12,15,16 reported changes in terms of PT prolongation, which was detected from 2 to 11% of the entire population. The rate of PT prolongation was not reported in all, but one study9 where a small prolongation can be appreciated. Conversely, analysis of PT according to disease severity was done in six studies,11–16 where PT was reported be longer in patients with severe compared with those without severe disease; prolongation of PT was more evident in nonsurvivors with values exceeding 15 to 16 seconds.

Activated Partial Thromboplastin Time

We extrapolated data from six studies (9–11 and 14–16) but only three9,10,16 reported changes in terms of aPTT prolongation, which was detected from 6 to 26% of the entire population. The rate of aPTT prolongation was unclear with only one study showing a modest increase. Five studies reported the behavior

Eligibility Criteria

Types of studies: clinical studies in patients with COVID-19 infection in humans that assessed the following laboratory parameters: d-dimer, platelet counts, prothrombin time, activated partial thromboplastin time, alanine aminotransferase, and aspartate aminotransferase. The studies included in this systematic review had to show COVID-19 infection with severe disease and control group.

No publication date or publication status restrictions were imposed. Only publications written in English language were included in this systematic review.

Information Sources

The studies were identified by searching electronic databases. This search was applied to PubMed, ISI Web of Science, SCOPUS, and Cochrane database. The last search was run on March 28, 2020. Reference lists of all studies included in the present systematic review were screened for potential additional eligible studies.

Search

Study Selection

Two authors (L.L. and D.P.) independently reviewed titles and abstracts generated by search. Studies were excluded if the title and/or abstract showed that the papers did not meet the selection criteria of our systematic review. For potentially eligible studies or if the relevance of an article could not be excluded with certainty, we procured the full text. Disagreements were resolved by discussion between L.L. and D.P.; if no agreement reached, a third author (F.V.) decided.

Studies not including a control group and animal studies were excluded. Case reports, editorials, commentaries, letters, review articles, and guidelines were also excluded from the analysis. – Fig. 1 reports the PRISMA diagram.

Hypercoagulation and COVID-19

Violi et al.
of aPTT according to the disease severity.11,12,14–16 Data are difficult to interpret as prolongation as well as shortening aPTT were reported in patients with severe versus nonsevere disease; prolongation of aPTT seemed to occur in nonsurvivors, but data need to be confirmed.

Liver Failure in Coronavirus 2019

As the prolongation of PT and aPTT could be dependent upon impaired liver biosynthesis and/or coagulopathy,20 we analyzed if COVID-19 patients showed changes in transaminases.

We found six studies9–12,16,17 reporting alanine transaminase (ALT) serum values: changes in terms of values exceeding normal range was reported in four9,10,12,17 which showed ALT increase in 12 to 31\% of patients. The rate of ALT increase was unclear as only one study showed absolute values, which were approximately twofold the normal range. Four studies11,12,16,17 reported ALT values according to the disease severity, and only two showed a modest increase in case of ARDS or poor survival.12,16

We found five studies9–11,16,17 reporting aspartate aminotransferase (AST) serum values; changes in terms of values exceeding normal range were reported in four9–11,17 which showed AST increase in 18 to 62\% of the entire population and in one study reporting absolute values, the AST increase was modest. Three studies11,16,17 reported AST values according to the disease severity and only two11,16 showed a modest but significant increase (– Table 2). Together, these data show that in COVID-19 liver failure is almost modest and, thereby, does not seem to have an impact on clotting changes.

Biological Plausibility of Hypercoagulation in Coronavirus 2019

Hospitalized patients affected by COVID-19 are frequently complicated by serious pneumonia, which may occur, from roughly 80 to 100\% of cases.11,21,22 Considering that respiratory tract infections are associated with an increased risk of vascular disease, including artery and venous thrombosis, it is not surprising that SARS-CoV-2 may be complicated by clotting changes that ultimately lead to thrombosis. Among artery thrombosis complications patients with pneumonia may experience MI in approximately 10\% of cases, and less frequently, ischemic stroke.3 In SARS-CoV-2 patients, detailed description of cardiovascular complications is still lacking even if in some reports it is possible to appreciate data indicating the occurrence of myocardial damage as depicted by enhanced levels of troponin associated or less with EKG changes compatible with MI.6,7 Conversely, no data have been so far reported regarding
Table 1 Coagulation and liver parameters in patients with coronavirus 2019 infection

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>D-dimer</th>
<th>Reference range and unit</th>
<th>Increased</th>
<th>Platelet count</th>
<th>Reference range and unit</th>
<th>Decreased</th>
<th>Prothrombin time</th>
<th>Reference range and unit</th>
<th>Prolonged</th>
<th>Activated partial thromboplastin time</th>
<th>Reference range and unit</th>
<th>Prolonged</th>
<th>Alanine aminotransferase (U/L)</th>
<th>Reference range and unit</th>
<th>Increased</th>
<th>Aspartate aminotransferase (U/L)</th>
<th>Reference range and unit</th>
<th>Increased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al^9</td>
<td>149</td>
<td>0.22 (0.28)</td>
<td><0.55 mg/L</td>
<td>21 (14.09%)</td>
<td>174.5 (78.25)</td>
<td>125–350 × 10^9/L</td>
<td>120 (12%)</td>
<td>12.20 ± 1.53</td>
<td>10–13.5 seconds</td>
<td>17 (11.41%)</td>
<td>33.29 ± 4.98</td>
<td>22–36 seconds</td>
<td>40 (26.85%)</td>
<td>20 ± 20.5</td>
<td>(U/L; 0–64)</td>
<td>18 (12.08%)</td>
<td>23 ± 15.75</td>
<td>(U/L; 8–40)</td>
<td>27 (18.12%)</td>
</tr>
<tr>
<td>Chen et al^10</td>
<td>99</td>
<td>0.9 (0.5–2.8)</td>
<td>0.0–1.5 µg/L</td>
<td>36 (36%)</td>
<td>213.15 (79.1)</td>
<td>125–350 × 10^9/L</td>
<td><100 – 2/40 (5%)</td>
<td>11.3 (1.9)</td>
<td>10.5–13.5 seconds</td>
<td>17 (11.41%)</td>
<td>27.3 (10.2)</td>
<td>22–36 seconds</td>
<td>6 (6%)</td>
<td>39.0 (22.0–53.0)</td>
<td>(U/L; 9.0–50.0)</td>
<td>28 (28%)</td>
<td>34.0</td>
<td>(U/L; 8–40)</td>
<td></td>
</tr>
<tr>
<td>Huang et al^11</td>
<td>41</td>
<td>0.5 (0.3–1.3)</td>
<td><0.5 µg/L</td>
<td>>1 µg/L</td>
<td>164.5 (131.5–263.0)</td>
<td>× 10^9/L</td>
<td><100 – 13 (7%)</td>
<td>11.1 (10.1–12.4)</td>
<td>sec</td>
<td>32.0 (21.0–50.0)</td>
<td>17 (11.41%)</td>
<td>27.0 (24.2–34.1)</td>
<td>sec</td>
<td>3.0 (17.0–46.0)</td>
<td>U/L</td>
<td>59/189 (31%)</td>
<td>(31% (>40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou et al^12</td>
<td>191</td>
<td>0.8 (0.4–3.2)</td>
<td>mg/L</td>
<td>21 (11.47%)</td>
<td>206.0 (155.0–262.0)</td>
<td>× 10^9/L</td>
<td><100 – 12 (6.56%)</td>
<td>11.6 (10.6–13.0)</td>
<td>12.13</td>
<td>13.7 (13.1–14.6)</td>
<td>17 (11.41%)</td>
<td>29.01 ± 2.93</td>
<td>sec</td>
<td>30.0 (17.0–46.0)</td>
<td>9–50 U/L</td>
<td>6 (6%)</td>
<td>34.0</td>
<td>15–40 U/L</td>
<td></td>
</tr>
<tr>
<td>Yang et al^13</td>
<td>52</td>
<td>10.36 ± 25.3</td>
<td>mg/L</td>
<td>21 (11.47%)</td>
<td>180.62 (mean)</td>
<td>× 10^9/L</td>
<td>20600 (137.00–241.50)</td>
<td>12.13</td>
<td>11.5–14.5 seconds</td>
<td>17 (11.41%)</td>
<td>41.6 (36.9–44.5)</td>
<td>sec</td>
<td>31.00 (19.75–47.00)</td>
<td>U/L</td>
<td>158/741 (21.3%)</td>
<td></td>
<td>33.0 (26.00–45.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han et al^14</td>
<td>94</td>
<td>0.66 (0.38–1.50)</td>
<td><0.50 µg/ml</td>
<td>21 (11.47%)</td>
<td>183</td>
<td>× 10^9/L</td>
<td>168.000 (132,000–207,000)</td>
<td>12.43</td>
<td>10.5–13.5 seconds</td>
<td>17 (11.41%)</td>
<td>28.70 (23.30–33.70)</td>
<td>sec</td>
<td>168/757 (22.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tang et al^15</td>
<td>183</td>
<td>0.61 (0.35–1.28)</td>
<td>0–1.5 µg/ml</td>
<td>21 (11.47%)</td>
<td>180.62 (mean)</td>
<td>× 10^9/L</td>
<td>131500 (120,000–207,000)</td>
<td>13.7</td>
<td>10.20–11.90</td>
<td>17 (11.41%)</td>
<td>28.70 (23.30–33.70)</td>
<td>sec</td>
<td>168/757 (22.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu et al^16</td>
<td>201</td>
<td>10.36/C6 25.31</td>
<td>mg/L</td>
<td>44 (23.3%)</td>
<td>210.62</td>
<td>(mean)</td>
<td>168.000 (132,000–207,000)</td>
<td>12.43</td>
<td>11.5–14.5 seconds</td>
<td>17 (11.41%)</td>
<td>28.70 (23.30–33.70)</td>
<td>sec</td>
<td>168/757 (22.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guan et al^17</td>
<td>1,099</td>
<td>0–0.55 mg/L</td>
<td>0–1.5 µg/L</td>
<td>260/560 (46.4%)</td>
<td>168.000</td>
<td>(mean)</td>
<td>168.000 (132,000–207,000)</td>
<td>13.7</td>
<td>10.20–11.90</td>
<td>17 (11.41%)</td>
<td>28.70 (23.30–33.70)</td>
<td>sec</td>
<td>168/757 (22.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aRefers to coagulopathy defined as a 3-second extension of prothrombin time or a 5-second extension of activated partial thromboplastin time.
Table 2 Coagulation and liver parameters in patients with coronavirus 2019 infection according to severity of the disease

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Number of patients</th>
<th>Severe</th>
<th>Nonsevere</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-dimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al11 (2020)</td>
<td>41 (13 ICU, 28 no ICU)</td>
<td>2.4 (0.6–14.4)</td>
<td>0.5 (0.3–0.8)</td>
<td>p = 0.0042</td>
</tr>
<tr>
<td>Zhou et al12 (2020)</td>
<td>191 (54 nonsurvivors, 137 survivors)</td>
<td>5.2 (1.5–21.1)</td>
<td>0.6 (0.3–1.0)</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td>Han et al14 (2020)</td>
<td>94 (49 ordinary, 35 severe, 10 critical)</td>
<td>> 1 μg/L = 44 (83%)</td>
<td>> 1 μg/L = 28/118 (24%)</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td>Platelet count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al11 (2020)</td>
<td>41 (13 ICU, 28 no ICU)</td>
<td>196 (165–263)</td>
<td>149 (131–263)</td>
<td>p = 0.450</td>
</tr>
<tr>
<td>Zhou et al12 (2020)</td>
<td>191 (54 nonsurvivors, 137 survivors)</td>
<td>165.5 (107.0–229.0)</td>
<td>220.0 (168.0–271.0)</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td>Yang et al13 (2020)</td>
<td>52 (32 nonsurvivors, 20 survivors)</td>
<td>191 (63)</td>
<td>164 (74)</td>
<td>n.r.</td>
</tr>
<tr>
<td>Wu et al16 (2020)</td>
<td>117 (no ARDS, 84 ARDS)</td>
<td>162.00 (110.50–262.75)</td>
<td>204.00 (137.25–262.75)</td>
<td>0.100</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al11 (2020)</td>
<td>41 (13 ICU, 28 no ICU)</td>
<td>12.2 (11.2–13.4)</td>
<td>10.7 (9.8–12.1)</td>
<td>p = 0.012</td>
</tr>
<tr>
<td>Zhou et al12 (2020)</td>
<td>191 (54 nonsurvivors, 137 survivors)</td>
<td>12.1 (11.2–13.7)</td>
<td>11.4 (10.4–12.6)</td>
<td>p = 0.0004</td>
</tr>
<tr>
<td>Yang et al13 (2020)</td>
<td>52 (32 nonsurvivors, 20 survivors)</td>
<td>12.9 (2.9)</td>
<td>10.9 (2.7)</td>
<td>n.r.</td>
</tr>
<tr>
<td>Han et al14 (2020)</td>
<td>94 (49 ordinary, 35 severe, 10 critical)</td>
<td>> 16 seconds = 7 (13%)</td>
<td>> 16 seconds = 4/128 (3%)</td>
<td>p = 0.016</td>
</tr>
<tr>
<td>Activated partial thromboplastin time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al11 (2020)</td>
<td>41 (13 ICU, 28 no ICU)</td>
<td>26.2 (22.5–33.9)</td>
<td>27.7 (24.8–34.1)</td>
<td>p = 0.570</td>
</tr>
<tr>
<td>Zhou et al12 (2020)</td>
<td>191 (54 nonsurvivors, 137 survivors)</td>
<td>27 (50%)b</td>
<td>10 (7%)b</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td>Han et al14 (2020)</td>
<td>94 (49 ordinary, 35 severe, 10 critical)</td>
<td>Severe: 29.53 ± 3.48</td>
<td>Critical: 29.41 ± 1.68</td>
<td>28.56 ± 2.66</td>
</tr>
<tr>
<td>Tang et al15 (2020)</td>
<td>183 (21 nonsurvivors, 162 survivors)</td>
<td>44.8 (40.2–51.0)</td>
<td>41.2 (36.9–44.0)</td>
<td>p = 0.096</td>
</tr>
<tr>
<td>Wu et al16 (2020)</td>
<td>117 (no ARDS, 84 ARDS)</td>
<td>26.00 (22.55–35.00)</td>
<td>29.75 (25.55–32.85)</td>
<td>p = 0.130</td>
</tr>
<tr>
<td>ALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al11 (2020)</td>
<td>41 (13 ICU, 28 no ICU)</td>
<td>49.0 (29.0–115.0)</td>
<td>27.0 (19.5–40.0)</td>
<td>0.038</td>
</tr>
<tr>
<td>Zhou et al12 (2020)</td>
<td>191 (54 nonsurvivors, 137 survivors)</td>
<td>40.0 (24.0–51.0)</td>
<td>27.0 (15.0–40.0)</td>
<td>0.005</td>
</tr>
<tr>
<td>Wu et al16 (2020)</td>
<td>117 (no ARDS, 84 ARDS)</td>
<td>35.00 (21.50–52.50)</td>
<td>27.00 (18.00–41.50)</td>
<td>0.01</td>
</tr>
<tr>
<td>Guan et al17 (2020)</td>
<td>1,099 COVID-19 patients (926 nonsevere vs. 173 severe)</td>
<td>38/135 (28.1%) > 40 U/L</td>
<td>120/606 (19.8%) > 40 U/L</td>
<td>n.r.</td>
</tr>
</tbody>
</table>

(Continued)
deep venous thrombosis. Systemic coagulation abnormalities, including clotting activation and inhibition of anticoagulant factors, have been observed not only in sepsis but also in pneumonia.

At this last regard, we have previously reported that pneumonia may be associated with clotting activation as well as lowering of natural anticoagulants. Thus, we found enhanced levels of the prothrombin fragment F1 + 2, which is a marker of thrombin generation, along with impaired activation of the anticoagulant Protein C. These changes occurred during the acute phase of the disease and tended to normalize at the discharge.4

Platelet activation has been investigated by measuring the soluble levels of CD40L and P-selectin, which were both elevated during the acute phase of pneumonia, along with an overproduction of platelet thromboxane (Tx) B2; of note, platelet TxB2 was independently associated with the occurrence of MI. Finally, we observed that patients with pneumonia display impaired artery dilatation, which is detectable during the acute phase of the disease and improve at discharge.24

The mechanism accounting for these changes is not clear, but it is intriguing that Nox2, which is the most important enzyme generating reactive oxidant species (ROS), is over-activated in patients with pneumonia.25 Thus, Nox2 is implicated in artery dilatation and platelet activation by inactivating nitric oxide or enhancing platelet eicosanoid production; experimental model of platelet-related thrombosis provided support to the role of Nox2 as in Nox2 animal knockout thrombus growth is prevented.26,27

Thus, there are at least three changes occurring during the acute phase of pneumonia, which may precipitate artery and/or venous thrombosis (►Fig. 2). The mechanisms accounting for clotting and vascular changes have not been defined yet by systemic inflammation, including production of reactive oxidant ROS might have a role. In this context, there are growing body of experimental and clinical evidence that Nox2-derived ROS are implicated in both clotting and platelet activation, acting as intrasignaling pathway to promote thrombin generation and platelet aggregation or to impairs artery dilatation26,27 (►Fig. 2). Data regarding Nox2 in SARS-CoV-2 patients are still lacking but should be

![Fig. 2 Hypothetic mechanisms accounting for hypercoagulation in severe acute respiratory syndrome coronavirus 2 patients.](image-url)
investigated as experimental data provided evidence for a role played by Nox2 upregulation in the systemic inflammation and pathogenicity elicited by several RNA viruses including influenza virus. Data regarding clotting changes in SARS-CoV-2 are still sparse and elusive. The only finding which could be consistent with clotting activation is the increase of D-dimer; however, which is not specific for clotting activation as it may also increase as result of systemic proteolysis. There is also a trend toward PT prolongation and low platelet count in patients with severe disease, suggesting a role for coagulation in precipitating poor outcomes. Preliminary data regarding the relationship between elevated D-dimer and poor outcome would be in favor of this hypothesis, but limited study methodology precludes definite conclusions.

Perspectives and Conclusion

The data so far reported are suggestive of low-grade intravascular clotting activation, which is evident overall in patients with severe disease. The finding more consistent in support of this hypothesis is the increase of D-dimer, which is almost evident in patients with severe; in a small series of a retrospective study, D-dimer was associated with poor survival. Concerning PT, aPTT and platelet count data are more elusive even if there is a trend for changes suggestive of a hypercoagulation state in patients with severe disease. Thus, future study should employ more sophisticated methodology to screen for hypercoagulation state and, in the same time, clarify if platelet activation occurs also in this setting; in this last context, analysis of systemic markers of platelet activation such as soluble P-selectin or IIb/IIIa could be useful to address this issue. In the meantime, a hot issue is if SARS-CoV-2 patients should be treated or not with antithrombotic drugs and if the clinical presentation may drive this therapeutic decision (►Fig. 3). On the basis of previous reports showing that patients with pneumonia are associated with platelet and clotting activation, interventional trials aimed at assessing the efficacy of antithrombotic treatment, including aspirin or low-molecular-weight heparin (LMWH), should be planned: preliminary data suggested a potential efficacy of aspirin in patients with pneumonia. Antithrombotic treatment could be investigated in patients with severe pneumonia or pneumonia complicated by ARDS or by sepsis or needing mechanical ventilation/ICU; the gray area is in case of no pneumonia or pneumonia with low mortality risk according to several risk scores such as PSI, CURB65, or SOFA, in which antithrombotic treatment may be questionable; the coexistence of elevated D-dimer in patients with mild pneumonia may be another setting to be investigated (►Fig. 3).

In absence of clinical trials and mechanism of disease indicating the prominent role, if any, of platelets or clotting system in favoring SARS-CoV-2 sequelae, treating all SARS-CoV-2 with prophylactic doses of LMWH, independently from clinical presentation and on the basis of laboratory changes suggestive of a hypercoagulation state, may be intriguing but premature until the interplay between hypercoagulation and SARS-CoV-2 is clarified; previous study in a different clinical setting, that is acutely ill medical patients, demonstrated that without an appropriate definition of hospitalized medical patients at risk of thrombosis, the prophylaxis with LMWH is useless and potentially dangerous. Thus, patients with pneumonia, particularly those with severe infections as defined by several scores and suffering from complications as ARDS or sepsis or needing mechanical ventilation/ICU treatment could be candidates to

![Fig. 3](https://example.com/fig3.png) Suggested algorithm for antithrombotic treatment in severe acute respiratory syndrome coronavirus 2 patients.
randomized clinical trials with antithrombotic treatment (► Fig. 3) to assess if this approach may blunt SARS-CoV-2 sequelae.

Conflict of Interest
None declared.

References