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Lower limb ischemia is of two types: acute and chronic.
Acute lower limb ischemia is mostly due to sudden obstruc-
tion of lower limb arteries because of embolus or thrombo-
sis.1 Very rarely aortic dissection and thrombosis of popliteal
artery aneurysm may cause acute lower limb ischemia.
Chronic lower limb ischemia (CLLI), a slowly progressive
disease due to obliteration of arteries in the lower limb, is
classified as mild, moderate, and critical.2 Mild CLLI is
asymptomatic. Moderate CLLI causes intermittent claudica-

tion, while critical CLLI is characterized by pain at rest and
may culminate into nonhealing chronic leg ulcer and gan-
grene. Critical lower limb ischemia (CLI) is caused by ath-
erosclerosis and the risk factors for CLI are similar to those of
atherosclerosis, such as diabetes, dyslipidemia, smoking,
hypertension, obesity, and infection.3

Prevalence of CLLI rises with age. It is uncommon before
the age of 50 years but rises to 20% at the age of 80 years.4 It is
estimated thatmore than 200million people suffer fromCLLI
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Abstract This review focuses on the role of advanced glycation end products (AGEs) and its cell
receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb
ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb
arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in
atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting
in CLLI. Serumand tissue levels of AGE, and expression of RAGE are elevated, and the serum
levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction
increase the generation of various atherogenic factors including reactive oxygen species,
nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant
protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE
acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced
atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through
reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE,
suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by
upregulating sRAGE expression, and exogenous administration of sRAGE, and use of
antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between
stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the develop-
ment of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of
AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for
prevention, regression, and slowing of progression of CLLI.
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worldwide.5 The overall prevalence and incidence of CLLI in
elderly people in U.S. are 0.23 and 0.20%, respectively, and
increasewith diabetes and aging, and are higher inmale than
female.6 It is also reported that in diabetics the risk of critical
lower limb ischemia is increased by 7.6-fold. The incidence
of CLLI in black Americans is 0.41% while that in white
Americans it is 0.18%.

Advanced glycation end products (AGEs) and its cell-
bound receptor RAGE (receptor for AGE) and soluble
receptor for AGE (sRAGE) have been implicated in carotid
artery de-endothelialization-induced neointima expansion
in wild-type mice,7,8 streptozocin-induced diabetes acceler-
ated atherosclerosis in apolipoprotein E (apoE)-deficient
mice,9 coronary artery disease (CAD),10 and restenosis fol-
lowing percutaneous coronary intervention (PCI).11 AGE-
RAGE axis comprise of AGE, RAGE, and sRAGE. Possibilities
exist that AGE-RAGE axis is involved in the pathogenesis of
atherosclerosis in the arteries supplying the lower limb
resulting in CLLI. If AGE-RAGE is involved in the development
of chronic limb ischemia, then the levels of AGE in artery and
serum, and expression of RAGE in arterywill be elevated, and
serum levels of sRAGE will be reduced in patients with
chronic limb ischemia. Understanding the role of AGE-
RAGE axis in atherosclerosis in CLLI a novel strategy can be
developed for the prevention, slowing of progression, and
regression of CLLI. This article gives a brief review of AGE-
RAGE axis, serum levels of AGE and sRAGE, and tissue levels
of RAGE expression, AGE-RAGE interaction, mechanisms by
which AGE-RAGE axis induces atherosclerosis, and targeting
AGE-RAGE axis for the treatment of CLLI.

AGE-RAGE Axis

AGEs are heterogeneous groups of irreversible adducts
formed from nonenzymatic interaction of amino groups of
proteins, lipids, and nucleic acids with reducing monosac-
charides such as glucose, fructose, and glyceraldehyde.12,13

AGE interacts with RAGE, sRAGE, cRAGE, and esRAGE. RAGE
is cell-bound receptor for AGE. There are two isoforms of
RAGE: cleaved RAGE (cRAGE) which is proteolytically
cleaved from full-length RAGE,14 and endogenous secretory
RAGE (esRAGE) which is produced from splicing of full-
length RAGE messenger ribonucleic acid (mRNA).15 sRAGE
is composed of both cRAGE and esRAGE, and AGE interacts
with its cell receptor (RAGE) to produce reactive oxygen
species (ROS) through activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase16 which activates
nuclear factor-kappa B (NF-kB).17 Activated NF-kB activates
numerous genes like tumor necrosis factor-α (TNF-α), inter-
leukin (IL)-1, IL-2, IL-6, IL-8, and IL-9.18,19 Proinflammatory
cytokines upregulates NADPH oxidase20 and increase the
generation of ROS.21 sRAGE acts as a decoy for RAGE by
binding with RAGE ligands.22 Binding of sRAGE with ligands
does not activate intracellular signaling. sRAGE also is a
competitive inhibitor of ligand-RAGE interaction.23 AGE-
RAGE stress has been defined as a shift in the balance
between stressors (AGE, RAGE) and antistressors (sRAGE)
in favor of stressors.24

Serum and Tissue Levels of AGE in Chronic
Lower Limb Ischemia

The levels of AGE have been investigated in both animals and
humans.

Animals
AGE levels were elevated in blood vessels of femoral artery
ligation-induced ischemic lower limb ischemia both in dia-
betic and nondiabetic mice.25 Tamarat et al26 have reported
that plasma levels of AGE are markedly elevated in lower
limb ischemia due to femoral artery ligation in streptozoto-
cin-induced diabetic mice.

Humans
Skin autofluorescence (SAF) is a noninvasive measurement of
levels of AGE in skin.27 SAF levels are elevated in patients with
peripheral artery disease (PAD).28 SAF is an independent
predictor of amputation of critical limb ischemia and is
associated with 5-year mortality in patients with PAD.29 It
has been reported that SAF is elevated in patients with carotid
artery stenosis as comparedwith control, and the levels of SAF
was greater in patients of carotid stenosis with peripheral
artery occlusive disease than in patients with carotid artery
stenosis alone.30 Nin et al31 in a 12-year follow-up study have
reported that the levels ofN(6)-carboxymethyl-lysine (CML),N
(6)-carboxyethyl-lysine (CEL), and pentosidine are elevated in
type 1 diabetes with cardiovascular complications including
amputation because of lower limb ischemia and vascular
surgery for peripheral atherosclerotic disease. These investi-
gators also reported that the elevated levels of AGEs were
associated with incidental fatal and nonfatal cardiovascular
diseases and all-cause mortality independent of traditional
cardiovascular risk factors. Plasma levels of AGEs and pento-
sidine are elevated in type 2 diabetic patients with CLLI and
were inversely associatedwith ankle-brachial index.32 Plasma
levels of AGEwere elevated inpatientswith peripheral arterial
disease.33 Prasad et al34 measured the serum levels of total
AGEs (CML, CEL, methylglyoxal dimer, and pyrilamine) using
AGE enzyme-linked immunosorbent assay (ELISA) kit, and
CML using anti-CML specific monoclonal antibody-based
ELISA kit in 16 patients with critical limb ischemia and 26
patients with lifestyle-limiting claudication. They observed
that both the total AGE and CML levelswere elevated in critical
limb ischemia; however, the correlationwasgreater with total
AGE than with CML. In summary, serum and tissue levels of
AGEs are elevated in patients with CLLI.

Expression of RAGE in Vessels of Chronic
Lower Limb Ischemia

Expression of RAGE in ischemic lower limbhas been reported
both in animals and humans.

Animals
Using single-photon emission computerized tomography/
computed tomography scan, ex vivo gamma counting and
immunohistopathology, Tekabe et al35 have shown that the
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expression of RAGE were higher in ischemic limb of diabetic
and nondiabetic mice than in nonischemic diabetic and
nondiabetic mice. Lower limb ischemia in the mice was
produced by ligating left femoral artery. Streptozotocin
was used to produce diabetes.

Humans
Ritthaler et al36 have observed that RAGE expression in
endothelial cells was elevated in patients with PAD with or
without diabetes compared with healthy subjects. All select-
ed patients were in stages IIb–IV according to Fontaine
criteria for peripheral occlusive vascular disease. The control
subjects had no diabetes or peripheral vascular occlusive
disease. Malmstedt et al33 reported that RAGE expression
was observed in vein used for bypass in patients with
peripheral arterial disease.

Serum/Plasma Levels of sRAGE in Chronic
Lower Limb Ischemia

There are very few papers available in literature on the
serum/plasma levels of sRAGE in CLLI in animals and
humans.

Animals
Kim et al37 have shown that blood flow ratio of
ischemic/control limb in hindlimb ischemia model of mice
was significantly reduced in diabetic mice compared with
nondiabetic mice postoperatively. However, the blood flow
ratio of ischemic/control was significantly greater in mice
treated with sRAGE compared with control group postoper-
atively. They also showed that the capillary density was
reduced in ischemic limb of diabetic mice compared with
ischemic limb of nondiabetic mice. However, the capillary
density was greater in mice treated with sRAGE compared
with untreated diabetic mice. These data suggest that sRAGE
levels may be lower in ischemic lower limb.

Humans
Falcone et al38 measured the plasma levels of sRAGE in CAD
patients with and without PAD (chronic limb ischemia). The
patientswith PADhad ankle-brachial indexof< 0.9 andwere
in stage of IIb and stage III according to Fontaine classifica-
tion. These authors reported that plasma sRAGE levels were
48% lower in CAD patients with or without PAD as compared
with controls. sRAGE levelswere 19.7% lower in CADpatients
with PAD as comparedwith CADpatientswithout PAD. These
values suggest that plasma levels of sRAGE are lower in
patients with PAD as compared with controls.

In summary, serum/plasma levels of AGE and expression
of RAGE are elevated while plasma levels of sRAGE are
reduced in patients with CLLI.

Role of AGE-RAGE Axis in the Development of
Atherosclerosis

AGE could induce development of atherosclerosis through
nonreceptor and receptor-dependent mechanisms.

Nonreceptor-Dependent Mechanism of AGE in
Development of Atherosclerosis
There are various pharmacological effects of AGE in inducing
atherosclerosis. AGE modifies apoB100 which makes low-
density lipoprotein (LDL) cholesterol more atherogenic.39

AGE increases synthesis of extracellular matrix,40 traps
endothelial LDL,41 and cross-bindswith collagen.42Glycation
of apoB and phospholipid component of LDL alters LDL
clearance and increases the susceptibility of LDL oxida-
tion.43,44 AGE increases susceptibility of LDL to oxidation.45

AGE decreases the production of nitric oxide (NO).46 Oxi-
dized LDL (Ox-LDL) decreases the production of NO through
reduction of NO-synthase (NOS).47 It has been reported that
AGE quenches NO.48 Matrix-bound AGE reduces NO produc-
tion,49 decreases the half-life of NOS,50 quenches and inacti-
vates NO,51 and inhibits the antiproliferative activity of NO.52

AGE reduces NOSmRNA and protein resulting in reduction in
NO levels.53Matrix-bound AGE also increases the expression
of endothelin-154 which has been implicated in the develop-
ment of atherosclerosis.40 Glycation of LDL decreases its
recognition by LDL receptors.55 Glycated LDL increases the
smooth muscle cell proliferation and differentiation.56 AGE
interferes reverse cholesterol transport57 which will in-
crease the extracellular cholesterol. AGE increases accumu-
lation of cholesterol and its esters in macrophages in vitro.58

Receptor-Mediated Mechanism
AGE interactswith RAGE to generate ROS through activation of
NADPH oxidase.16 ROS then activates NF-kB which in turn
results in transcriptional activation of variety of inflammatory
genes such as TNF-α, TNF-β, IL-1, IL-6, IL-8, and interferon-
gamma.18,59–61 NF-kB induces gene for NADPH oxidase in
polymorphonuclear leukocytes62 which would generate ROS.
Interaction of AGE and RAGE enhances expression of intercel-
lular adhesion molecule-1, vascular cell adhesion molecule-1
(VCAM-1), and E-selectin through NF-kB.60 In apo-deficient
mice, streptozotocin-induced diabetes was associated with
increased expression of VCAM-1 and tissue factor.63 AGE
upregulates expression of monocyte chemoattractant pro-
tein-1 (MCP-1) mRNA in mesangial cells.64 AGE increases
expression of MCP-1 and vascular endothelial growth factor
in human-cultured mesangial cells.65 AGE induces expression
ofMCP-1 in podocytes through activation of RAGE and genera-
tion of intracellular ROS.66 AGE increases the expression and
secretionofgranulocytemacrophage-colonystimulating factor
(GM-CSF) bymacrophages.67 Interaction of AGEwith RAGE on
mononuclear leukocytes produces phenotype of activated
macrophages that promotes induction of insulin-like growth
factor (IGF), IGF-1, and platelet-derived growth factor
(PDGF).68,69 Binding of AGE with RAGE bearing mononuclear
phagocytes enhances chemotaxis leading to mononuclear
monocytes infiltration through intact endothelial surface.70,71

AGE-RAGE binding in smooth muscle cells enhances chemo-
tactic migration, cellular proliferation, and production of fibr-
ogen.72,73 AGE increases expression of transforming growth
factor-β (TGF-β) which is involved in extracellular matrix
formation.74 It is to note that ROS is involved in expression of
VCAMs through activation of NF-kB. AGE-RAGE interaction
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decreases endothelial barrier function and hence increases
permeability of endothelial cell layer.75,76 AGE also interacts
with sRAGE and has protective effect against adverse effects of
AGE-RAGE interaction.22,23 ►Fig. 1 shows the receptor-medi-
ated effects of AGE in the development of atherosclerosis. AGE-
RAGE interaction produces atherosclerosis through generation
of various chemicals while sRAGE prevent the development of
atherosclerosis by reducing the formation of these chemicals.

Mechanism of AGE-RAGE Axis-Induced
Atherosclerosis

The proposed mechanism of AGE-RAGE-induced athero-
sclerosis is depicted in ►Fig. 2. It is based on oxidative
hypothesis of atherosclerosis.75 The first step in the devel-
opment of atherosclerosis is mild oxidation of LDL called
minimally modified LDL (MM-LDL). MM-LDL is further
oxidized to produce Ox-LDL. Monocytes adhere to endo-
thelium and transmigrate into subendothelial space.76

Smooth muscle cells and endothelial cells exposed to
MM-LDL produce MCP-1 which assist monocyte migration.
Also, Ox-LDL directly enhances monocyte migration.
Monocytes/macrophages express LDL receptor but the
uptake of native LDL is not sufficient to produce foam
cells. Ox-LDL is a ligand for scavenger receptor that is
expressed when monocytes differentiate into tissue
macrophages. Monocyte/macrophage differentiation is
enhanced by release of monocyte-CSF from endothelial

cells stimulated by MM-LDL. Tissue macrophage has recep-
tors for Ox-LDL to produce foam cells, a major component
of fatty streak. It is an early stage of atherosclerosis.
Macrophages generate numerous growth regulating mol-
ecules.77 As mentioned above, AGE-RAGE interaction indu-
ces numerous growth factors (PDGF, IGF-1, TGF-β)68–74

which would increase smooth muscle proliferation and
migration, and fibrous tissue formation. Fatty streaks de-
velop into full-fledged atherosclerosis which is associated
with smooth muscle cell and lipid accumulation, necrotic
core, and formation of fibrous cap.72,73,77

ROS and Atherosclerosis

Oxygen radicals have been implicated in the development of
atherosclerosis.78,79 ROS generated by interaction of AGE
with RAGE, therefore, would induce atherosclerosis.

Treatment Modalities

Considering the role of AGE-RAGE axis in the pathophysiol-
ogy of atherosclerosis and hence CLLI, the treatment of CLLI
should be directed toward reduction in levels of AGE, ROS,
and RAGE, blocking of RAGE binding with AGE, degradation
of AGE in vivo, elevation of sRAGE levels, and antioxidant
(►Fig. 3). Targeting these pathways would prevent, regress,
or slow the progression of CLLI. A brief description of these
targets is being described here.

Fig. 1 Effects of interaction of AGE with RAGE and AGE with sRAGE on generation of atherogenic factors. AGE-RAGE interaction increase the
generation of ROS (reactive oxygen species), NF-kB (nuclear factor-kappa B) activation, MCP-1 (monocyte chemoattractant protein-1), GM-CSF
(granulocyte macrophage-colony stimulating factor), VCAM-1 (vascular cell adhesion molecule-1), ICAM-1 (intercellular adhesion molecule -1),
E-selectin; IL (interleukin), TNF-α (tumor necrosis factor-α), TNF-β, IFN-U (interferon-gamma), which are involved in the development of
neointimal hyperplasia and atherosclerosis. Interaction of AGEwith sRAGE reduces the amount of AGE to interact with RAGE leading to reduction
in formation of atherogenic factors resulting in decreased development of neointimal hyperplasia and atherosclerosis. AGE, advanced glycation
end products; RAGE, cell receptor for AGE; sRAGE, soluble receptor for AGE; PDGF, platelet-derived growth factor; IGF-1, insulin like growth
factor-1; TGF-β, transforming growth factor-β;. ", increase; ↓, decrease.
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AGE Reduction
Reduction of AGE levels in the body can be achieved by
reduction in dietary intake of AGEs, prevention of AGE
formation, and degradation of AGE in the body.

AGE Intake Reduction
There are certain diets which are rich in AGE content (red
meat, cheese, cream, animal fat, sweetened pastry).80 Butter,
cheese, cream, margarine, and mayonnaise contain high

quantity of AGE than oil and nuts.81 Beef has highest amount
of AGE followed by poultry, pork, fish, and eggs in the meat
class.81 Grains, legumes, breads, vegetables, fruits, and milk
contains lowest amount of AGE.81 Fat-free milk has lower
amount of AGE compared with whole milk.81 Consumption
of food containing high amount of AGE should be reduced in
patients with CLLI. Patients should be advised to consume
less sugar because sugars participate in generation of
AGEs.12,13 It has been reported that serum levels of AGE is

Fig. 2 Mechanism of AGE-RAGE-induced atherosclerosis. AGE, advanced glycation end products; RAGE, cell receptor for AGE; ROS, reactive
oxygen species; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion mplecule-1; LDL, low -density lipoprotein; MM-LDL,
minimally modified LDL; Ox-LDL, oxidized-LDL; MCP-1, monocyte chemoattractant protein-1; MC-SF, monocyte colony stimulating factor; VSMC,
vascular smooth muscle cell; EC, endothelial cell; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor-β; IL, interleukin; TNF-
α, tumor necrosis factor-α; IFN-U, interferon-gamma; TM, tissue macrophage; EC, endothelial cell; VSMC, vascular smooth muscle cell; TM,
tissue macrophage; ", increase.

Fig. 3 Potential treatment targets for chronic lower limb ischemia (CLLI). AGE, advanced glycation end products; RAGE, receptor for AGE;
sRAGE, soluble receptor for AGE; GLO1, glyoxalase 1; AGER1, advanced glycation end products receptor 1.
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markedly reduced in healthy or diabetic individual with
short-term consumption of low AGE containing diet.82

Food Cooking
Cooking at high temperature in dry heat (frying, broiling,
grilling, roasting) increases AGE formation more than cook-
ing in moist heat (poaching, stewing, steaming, and boil-
ing).83Duration of cooking also affects the formation of AGEs.
The formation of AGEs is markedly reduced when cooking at
low temperature in moist heat for short duration.81

Other AGE-Lowering Maneuvers
Cigarette smoking increases the serum levels of AGEs,83 and
hence the patient should be advised to stop cigarette smok-
ing. AGE levels are reduced by 41 to 60% with long runs in
untrained and trained subjects.84 Reduction in serum levels
of AGEs is greater with regular moderate exercise than
irregular severe exercise.85 Serum levels of AGE are reduced
with Tai chi exercise ofmoderate intensity.86 Patients should
be advised to do regular exercise of moderate intensity.

Prevention of AGE Formation
Consumption of acidic ingredients (lemon juice, vinegar)87 and
pomegranate and its phenolic components88 should be advo-
catedbecausetheypreventAGE formation.Somevitaminssuch
as benfotiamine,89 pyridoxine,90 vitamin C,91 vitamin D,92 and
vitamin E93 prevent the formation of AGEs. Carnosine, an
antioxidant frommeat, inhibits AGE formation.94 D-carnosine
hasbeenreported topreventdevelopmentofatherosclerosis in
diabetic mice.95,96 Linolenic acid prevents the formation of
AGEs.97 Aminoguanidine inhibits AGE formation.98 Clinical
trials with aminoguanidine have been terminated due to its
undesirable side effects.99 Alpha-lipoic acid,100 aspirin,101

metformin,102 pentoxifylline,103 resveratrol,104 and curcu-
min105 are potential inhibitors of AGE formation.

Suppression of RAGE Expressions and RAGE Blockers
Statins (simvastatin, atorvastatin),106,107 angiotensin-II recep-
torblockers (candesartan, telmisartan),108,109calciumchannel
blocker (nifedipine),110 antidiabetic agents (pioglitazone, rosi-
glitazone),111 and curcumin112 downregulate the expression
ofRAGE.Azeliragon (TTP488) inhibits interactionofRAGEwith
AGE and other RAGE ligands.113 RAGE receptor blockers have
been described in detail by Bongarzone et al.114 Preclinical
studies in animal model of Alzheimer’s disease have shown
that azeliragon decreases plaque deposition and slow cogni-
tive decline.115 Azeliragon in low doses improves cognitive
function in patients with Alzheimer’s disease.113 Azeliragon
treatment in mild to moderate Alzheimer’s diseasewas found
to be effective but phase 2 clinical trialwas stopped because of
adverse side effects. The search for RAGE blocker is on.116

Degradation of AGE In Vivo

Increasing Expression and Activity of Endogenous
Glyoxalase 1
Glyoxalase 1 (GLO1) degrades AGE through degrading reac-
tive dicarbonyls prior to formation of AGE.117 Overexpres-

sion of GLO1 would be helpful in reducing the levels AGE. It
has been reported that combined use of transresveratrol
found in grapes and hesperetin found in orange increased the
expression and activity of GLO1 in a placebo-controlled
crossover clinical trial.118 It was also reported that over-
expression of GLo1 in lens and retinal capillary pericytes
protected against hyperglycemia-induced protein modifica-
tion119 and apoptosis.120

Increasing Expression and Activity of Endogenous
Advanced Glycation End Products Receptor 1
Advanced glycation end products receptor 1 (AGER1)
degrades AGE intracellularly and is a blocker of AGE-RAGE-
mediated formation of ROS and proinflammatory cyto-
kines.121,122 There is no specific drug which can increase
the expression of AGER1. AGER1 counteracts AGE-induced
oxidative stress through inhibition of RAGE signaling.121,122

Since AGER1 and RAGE competes for with AGE, low concen-
tration of AGER1 would increase the binding of AGE with
RAGE, resulting in increased oxidative stress and proinflam-
matory cytokines. AGER1 is an AGE receptor.123 Reduction in
AGER1 expression is associated with elevated levels of
sRAGE.124 AGER1 is positively correlated with sRAGE in
complicated diabetes.124 The above data suggests that
AGER1 may serve as a future target for treatment of CLLI.

Increasing the Levels of sRAGE
Levels of sRAGE could be increased in two ways: upregula-
tion of expression of sRAGE and exogenous administration of
sRAGE.

Upregulation of sRAGE Expression
Statins such as pitavastatin and pravastatin increased the
serum levels of sRAGE and reduced the vascular remodeling
and atheroma in patients with CAD.125 sRAGE levels are
elevated in serum of patients with type 2 diabetes with
atorvasttin.126 Other statins (atorvastatin, fluvastatin, lova-
statin) increased the sRAGE levels in isolated cell culture.127

Angiotensin-converting enzyme inhibitors such as ramipril
andperindopril increase the serum levels of sRAGE. It has been
shown that ramipril increased the serum levels of sRAGE in
rat,128 and perindopril increased the serum levels sRAGE in
type 1 diabetic patients.128 Rosiglitazone129 an antidiabetic
drug elevates the serum levels of sRAGE in type 2 diabetic
patients. Serum levels of sRAGE are elevated in women with
polycystic ovarian syndrome with rosiglitazone.130

Exogenous Administration of sRAGE
Animal studies suggest that AGE-RAGE axis is involved in the
development of atherosclerosis. It has been reported that
AGE and RAGE levels are elevated in thewall of carotid artery
in Zucker diabetic rats as compared with euglycemic control
rats.7 These authors also showed that balloon injury in
carotid artery of these rats further increased the levels of
AGE and RAGE in the carotid artery associated with neo-
intimal hyperplasia. Administration of sRAGE before and up
to 21 days after balloon injury significantly reduced the
neointimal growth. Similarly, other investigators8 showed
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that arterial de-endothelialization in wild-type mice in-
creased the levels of AGE and RAGE in the injured artery
and this was associated with expansion of neointima. Ad-
ministration of sRAGE reduced the neointimal expansion
and decreased smooth muscle cell proliferation and migra-
tion, and extracellular matrix proteins expression. Adminis-
tration of sRAGE has been demonstrated to completely
suppress atherosclerosis in diabetic apoE-deficient mice
and this effect was independent of hyperglycemia and lipid
concentration.131 sRAGE has been shown to protect ischemic
stroke in animal model.132 The above data suggest that
sRAGE could be effective in the prevention and treatment
of atherosclerosis. However, no clinical trial with sRAGE has
been made in human atherosclerosis as yet.

Antioxidants
As mentioned earlier, AGE-RAGE interaction produces
ROS,16,62 which have been implicated in the development of
atherosclerosis.78,133–135 Considering that antioxidants may
be helpful in the treatment of CLLI, there are quite a few
antioxidants that can be used. Antioxidants have been shown
to reduce the development of atherosclerosis.136,137 Prasad
and Kalra138 have reported that vitamin E significantly pre-
vented the development of hypercholesterolemia-induced
atherosclerosis in rabbits. Hypercholesterolemia increases
generation of ROS through various mechanisms.138 Long-
term (18 months) use of vitamin E (50 IU in diet) with low
fat/cholesterol diet reduced atherosclerosis in Ldlr�/�mice.139

Clinical trials in humans showed some positive benefits.140

Meta-analysis did not show evidence of antiatherosclerotic
effects of vitamin E.141 Failure of antioxidant strategiesmay be
due to inappropriate doses, lack of combination of antioxi-
dants, application of antioxidants in very advanced athero-
sclerosis, and frequency of drug administration. Vitamin alone
may not be effective becausewhenvitamin E scavenges ROS, it
gets converted into tocopheryl radical which is harmful. Vita-
min C regenerates vitamin E from tocopheryl.142 Combination
of vitamin E with vitamin C would be helpful. Vitamin C is a
water-soluble antioxidant.143

CoenzymeQ10 is a lipophilic antioxidant, scavengesperoxyl
radicals, andhas antiatherogenic effects.144Probucol is a lipid-
soluble antioxidant143 and has antiatherogenic effect.145 Pra-
sad et al135 have reported that probucol ameliorated the
development of atherosclerosis in hypercholesterolemic rab-
bit. It has been shown to reduce restenosis following PCI.146 It
inhibits smooth muscle cell proliferation and cell adhesion
molecule expression on endothelial cells.143 There is a syn-
thetic antioxidant BO-653nwhich is an analogue ofα-tocoph-
erol and inhibitsdevelopmentofathertosclerosis.147 It reduces
α-tocopheroxyl radical and inhibits LDL oxidation in the
intimal area.148 Other antioxidants such as garlic149 and
secoisolariciresinol diglucoside have been reported to prevent
hypercholesterolemic atherosclerosis.134

Perspectives
CLLI is due to atherosclerosis in the arteries of lower limb. As
described earlier in this article, AGE-RAGE axis plays a role in
the development of atherosclerosis in numerous ways. First,

AGE and its interaction with RAGE reduces the levels of NO
which is known to protect atherosclerosis through vasodila-
tion, and inhibition of inflammatory mediators, platelet
aggregation, and platelet activation.150–152 Second, glycated
lipoprotein B100 enhances the atherogenic activity of LDL.39

Third, AGE-RAGE interaction decreases the reverse choles-
terol transport.153 Fourth, AGE and its interactionwith RAGE
produce ROS, NF-kB, cytokines, adhesion molecules, MCP-1,
GM-CSF, and growth factors which are involved in the
development of atherosclerosis and has been described in
detail in the previous section of this article. Besides these, it
is to note that VCAM-1 induces activation of NADPH oxidase
in the endothelium154 which would increase the ROS levels
and hence development of atherosclerosis.

AGE, RAGE, and sRAGE may play an important role in the
development of atherosclerosis and hence CLLI. As described
earlier in this article, plasma and skin25–34 levels of AGE and
RAGE expression in tissue33–35 are elevated while the serum
levels of sRAGE37,38 are reduced in patients with CLLI. In
addition,AGE ispresent intheatheroscleroticplaqueofdiabetic
patients.155 sRAGE is antiatherogenic because it competeswith
RAGE for binding with AGE. Also, it interacts with AGE before
RAGE can interact with AGE.156 Thus, low sRAGE levels in
patients with CLLI will bind with small amount of AGE and
hence leavingmoreAGEavailable to interactwithRAGEleading
to development of atherosclerosis. Low levels of sRAGE is,
therefore, atherogenic. It is known that atherosclerosis devel-
ops in diabetic patients in spite of high levels of sRAGE.157,158

Onewouldhave expected that high levels of sRAGEwould have
protected the development of atherosclerosis in diabetic
patients but it did not do so. The reason could be that elevation
of AGE levels is more than the elevation of sRAGE in diabetics.
Hence, measurement of AGE and sRAGE in the same patient
would be useful. Also, this will allow to assess the AGE-RAGE
stresswhich is a ratioofAGE/sRAGE.24AGE-RAGEstress isa risk
factor for disease and high AGE-RAGE stress indicates the
presence and severity of the disease.

Therapeutic intervention based on the etiology of CLLI,
should include reduction in the levels of AGE, prevention of
AGEformation,degradationofAGE invivo,suppressionofRAGE
expression, RAGE blockers, and elevation of sRAGE that have
been described in detail earlier in this article. It has been
reported that consumption of low AGE diet for 2 months
reduces the serum levels of AGE in mice.159 Reduction of AGE
diet for a short duration reduced the serum levels of AGE in
healthy and diabetic subjects.82 Stoppage of cigarette smoking
will also reduce the serum levelsofAGE.83Exercise also reduces
the levels of AGE in the serum.84,86,160,161 It has been reported
that regular physical activity reduces AGE levels and diabetic
complications.162 Unfortunately, no clinical trial has been con-
ducted to examine the effectiveness of agents that reduce the
formation of AGE or reduce the levels of AGE in reduction of
atherosclerotic changes inpatientswithCLLI. Although someof
theagents (benfotiamine,163vitaminE138,164) havebeenshown
to reduce the atherosclerotic changes in animal studies and
humans. Combined use of vitamin E and vitamin C has been
shown to slow down the progression of atherosclerosis in
hypercholesterolemic subjects.165 Combination of vitamin E
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and vitamin C will be effective in reducing atherosclerosis
in twoways: by scavenging ROS and by reducing the formation
of AGE.

Enzymatic (GLO1 and GLO2) degradation and AGE recep-
tor-mediated (AGER1 and AGER2) degradation of AGEwould
reduce the levels of AGE in the body. However, no such
pharmaceuticals have been developed for use in patients.
Attempt should be made by pharmaceutical companies to
develop these degraders for use in humans.

There are drugs used in diabetic and hypertensive
patients which suppress the expression of RAGE. Some of
the patients with CLLI may already have been using these
drugs and are getting the benefits. Azeliragon (a RAGE
blocker) has been developed114 and has been shown to be
effective in improving cognitive function in patients with
Alzheimer’s disease.113 May be this drug would work for
patients with CLLI. A search for new RAGE blocker should be
intensified.

The levels of sRAGE in blood should be elevated by increas-
ing expression of sRAGE and by exogenous administration in
patients with CLLI. The drugs (statins, angiotensin-converting
enzyme inhibitors, antidiabetic drug, and rosiglitazone) ele-
vate the sRAGE expression. Again some of the patients with
CLLI may be using these drugs for other associated conditions,
and taking advantage of this. Exogenous administration of
sRAGE has been shown to be effective in preventing the
development of atherosclerosis in animal studies.7,8,131,132

Exogenous administration of sRAGE should be tried in animal
model of CLLI to see if it is effective in prevention, regression,
and slowing of atherosclerosis. Also, recombinant sRAGE
should be developed for use in humans, and tried in patients
with CLLI.

These treatment modalities may not be fully effective in
patients with CLLI because some other factors besides AGE-
RAGE axis may also be involved in the pathogenesis of CLLI.

Conclusion

CLLI is due to atherosclerosis in the lower limb arteries.
Elevated levels of AGE in serum/plasma, increased expres-
sion of RAGE in arteries, and reduced serum levels of sRAGE
are involved the development of atherosclerosis through
oxidation of LDL, reduction in NO, activation of NF-kB, and
increases in the levels of ROS, cell adhesion molecules,
cytokines, MCP-1, GM-CSF, and growth factors. The treat-
ment modalities (prevention, regression, and slowing of
progression of atherosclerosis) of CLLI should include lower-
ing of AGE consumption, prevention of AGE formation,
increase in degradation of AGE in vivo, suppression of
RAGE, RAGE blocker, upregulation of sRAGE expression,
and exogenous administration of sRAGE.
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