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Introduction

Cardiovascular disease (CVD) is one of the leading causes of
morbidity and mortality worldwide. An estimated 422.7
million cases of CVD occurred in 2015, of which an estimated
17.9million people died. Among CVDs,myocardial infarction
(MI) and stroke have been the two major causes of CVD-
related health loss worldwide.1 While normal blood clotting
is essential to stop bleeding at sites of vascular injury,
excessive coagulation can result in vascular occlusions in
arteries or veins eventually leading to thrombotic diseases.2

The coagulation cascade is based on a waterfall model,
described by Macfarlane3 and Davie and Ratnoff4 in 1964,
that involves the sequential activation of different zymogens

to active enzymes. Blood coagulation can be initiated by
exposure of tissue factor (TF) to the blood stream or by
activation of FXII through negatively charged surfaces, which
can be either artificial (e.g., ellagic acid and kaolin) or of
natural origin (e.g., polyphosphates and collagen).5,6 In the
extrinsic pathway, complex formation of TF and FVIIa leads
to activation of FX and FIX and subsequently to thrombin
generation.7 The conversion of FXII to FXIIa is the primary
step of the intrinsic coagulation pathway, which leads to
subsequent activation of FXI, FIX, FX, and prothrombin. FXIIa
also activates PK, thereby initiating the kallikrein–kinin
pathway and amplifying the formation of FXIIa through
the reciprocal activation of FXII by PKa.8 Thrombin converts
fibrinogen to fibrin in the common pathway.
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Abstract Cardiovascular disease, including stroke, myocardial infarction, and venous thrombo-
embolism, is one of the leading causes of morbidity andmortality worldwide. Excessive
coagulation may cause vascular occlusion in arteries and veins eventually leading to
thrombotic diseases. Studies in recent years suggest that coagulation factors are
involved in these pathological mechanisms. Factors XIa (FXIa), XIIa (FXIIa), and plasma
kallikrein (PKa) of the contact system of coagulation appear to contribute to
thrombosis while playing a limited role in hemostasis. Contact activation is initiated
upon autoactivation of FXII on negatively charged surfaces. FXIIa activates plasma
prekallikrein (PK) to PKa, which in turn activates FXII and initiates the kallikrein–kinin
pathway. FXI is also activated by FXIIa, leading to activation of FIX and finally to
thrombin formation, which in turn activates FXI in an amplification loop. Animal studies
have shown that arterial and venous thrombosis can be reduced by the inhibition of FXI
(a) or PKa. Furthermore, data from human studies suggest that these enzymes may be
valuable targets to reduce thrombosis risk. In this review, we discuss the structure and
function of FXI(a) and PK(a), their involvement in the development of venous and
arterial thrombosis in animal models and human studies, and current therapeutic
strategies.
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Inhibition of coagulation factors is an obvious approach for
antithrombotic therapies since excessive coagulation is a
potential cause for thrombotic diseases. However, not all
coagulation factors are equally suitable targets as some coag-
ulation factors are essential for hemostasis and inhibition of
these factorsmight increase thebleeding risk. For instance, FIX
or FVIII-deficient patients suffer from spontaneous bleedings,
whereas FXI-deficient individuals have none to a mild-bleed-
ingphenotype.9 In this review,wediscuss theroleof FXI(a) and
its homolog PK(a) in thrombosis, taking into account results
from arterial and venous thrombosis animal models and
reports from human studies and deficiencies.

Factor XI(a) Structure

FXI is a 160 kDa zymogen that circulates in plasma at a
concentrationof30 nM10and ismostlybound inanoncovalent
complex to high molecular weight kininogen (HK), a 120 kDa
plasma protein possibly functioning as an adaptor for FXI to

bind to negatively charged surfaces.11,12 FXI is mainly synthe-
sized in hepatocytes10 and regulated by the transcription
factor hepatocyte nuclear factor-4α.13 Recently, FXI pre-
mRNA could be identified in platelets by Zucker et al. They
showed that FXI pre-mRNA is spliced intomaturemRNAupon
platelet activation by either thrombin or adenosine diphos-
phate. Theresultingproteinhassimilar properties asplasmatic
FXI when analyzed by western blot or an activity assay.14

The structure of FXI is fundamentally different from other
coagulation factors since it forms a dimeric structure and
unlike vitamin K-dependent coagulation factors lacks a Gla
domain (►Fig. 1). Papagrigoriou et al provided a crystal
structure of full-length FXI purified from human plasma.15

FXI consists of two identical subunits of 607 amino acids,
which are linked to each other via an interchain disulfide
bond at Cys321. In addition, hydrophobic interactions and
salt bridges stabilize this dimeric structure.15

The activation of the zymogen monomers occurs through
cleavage of the Arg369–Ile370 bond (►Fig. 1), generating a

Fig. 1 Structure of human factor XI and plasma prekallikrein. The domain structure of both zymogens comprises four tandem repeats called
apples domains. The catalytically active serine protease domain (catalytic domain) is situated at the C-terminus. The activation of FXI and PK
occurs through cleavage of the Arg369–Ile370 and the Arg371–Ile372 bond, respectively. While FXI comprises two identical subunits linked to
each other via the A4-domains, PK does not form a dimeric structure. The apple domains contain binding sites for various proteins and enzymes.
CD, catalytic domain; FXI, factor XI; PK, prekallikrein.
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47 kDa heavy chain and a 33 kDa light chain linked by a
disulfide bond.16

Each monomer comprises four tandem repeats of 90 to 91
aminoacidseach.Theseso-calledappledomainsA1toA4at the
N-terminus of the heavy chain contain seven antiparallel β-
strands and an α-helix. The serine protease domain in the light
chain is situated at the C-terminus and connected to the apple 4
domain.15,17This linkagegeneratesa so-called “cupandsaucer”
conformationwith the catalyticdomain locatedon thedisk-like
arrangement of the apple domains.15 Each apple domain
contains binding sites for various proteins and enzymes
(►Fig. 1). Thrombin and HK interact with FXI via the A1 and
A2 domains,18,19 respectively, whereas the A3 domain has
binding sites for FIX,20 the platelet receptor GPIb,21 and hepa-
rin.22 FXIIa seems to bind to the A4 domain of FXI, which also
carries the linkage domain for dimerization.23,24

Factor XI Activation and Function

FXI is mainly activated via two enzymes, namely FXIIa25 in
the contact activation pathway and thrombin26,27 as part of

an amplification loop (►Fig. 2). Upon vessel injury, suben-
dothelial TF is exposed to the peripheral blood stream.
Together with FVIIa, it activates FX to FXa and FIX to FIXa.
In complex with the cofactor FVa, FXa converts prothrombin
to thrombin,7 which is considered the key enzyme at the
end of the coagulation cascade triggering various (patho)
physiological pathways, including fibrin formation and
stability, platelet activation, and initiating inflammatory
processes. Thrombin is inactivated via antithrombin,28 the
TF–FVIIa–FXa complex by tissue factor pathway inhibitor
(TFPI),7 quickly. Larger amounts of thrombin are generated
during thrombus stabilization and propagation in positive
feedback loops including amongst others (FV and FVIII) the
activation of FXI by thrombin.28

Besides the activation by thrombin, FXIIa converts FXI to
FXIa in the contact activation pathway. Here, the autoactiva-
tionof FXII onnegatively charged surfaces,which can be either
artificial (e.g., ellagic acid and kaolin) or of natural origin (e.g.,
polyphosphates, collagen, and nucleic acids), 5,6,29 represents
the initial step and results in sequential activation of FXI,
followed by FIX, FX, and prothrombin.8

Fig. 2 Coagulation cascade. The coagulation cascade is based on a waterfall model that involves the sequential activation of different zymogens to active
enzymes. The conversion of FXII to FXIIa is the primary step of the intrinsic coagulation pathway, leading to subsequent activation of FXI, FIX, FX, and
prothrombin. FXIIa also activates PK, which reciprocally activates FXII, initiates the kallikrein–kinin pathway and, in the absence of FXI, activates FIX (dashed
line). The FVIIa–TF complex of the extrinsic pathway activates FIX and FX, leading to thrombin generation. Zymogens are indicated in roman numerals and
their activated forms end with an a. Cofactors within the coagulation cascade are shown in red. FXI, factor XI; PK, prekallikrein; TF, tissue factor.
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In summary, FXI activation plays a critical role in both, the
propagation phase of thrombin generation and during con-
tact activation.

This activation does not happen in a single step but
through the formation of an intermediate with one activat-
ed subunit (½-FXIa). It can be distinguished from fully
activated FXIa on sodium dodecyl sulphate-polyacrylamide
gel electrophoresis under reducing conditions.30 The natu-
ral substrate for FXIa is FIX, a 57 kDa single-chain glycopro-
tein that binds to the A3 domain of FXIa, but does not
interact with the zymogen FXI since the binding site on A3
for FIX is only exposed after a conformational change upon
FXI activation.31 FIX seems to interact with FXIa via its Gla
domain.31

In vitro, data of several groups suggest that FXIa might
activate other proteins in the coagulation cascade as well,
including FV, FVIII, and FX. The sites cleaved by FXIa on FV
and FVIII appear to be similar to those observed during their
activation by thrombin, which is still viewed as the main
activator of both cofactors.32 Matafonov et al described that
FX can be activated by FXIa, but to a lesser extent than the
main FXIa substrate FIX. While FIX activation via FXIa is
calcium-dependent, FX and FV activation are apparently
not.33 It is also reported that TFPI, an inhibitor of the TF/
FVIIa/FXa complex, can be inactivated by FXIa through
proteolytic cleavage of TFPI between the Kunitz 1 and 2
domains.34 Because lack of functional TPFI may lead to
prolonged activity of the TF/FVIIa/FXa complex, this may
have an impact on the thrombin concentration in the early
amplification phase.

Recent data suggest a role for FXI as a molecular linker of
coagulation and inflammation. Ge et al demonstrated that
prochemerin (chem163S) can be cleaved in plasma by
contact phase-activated FXIa to a partly active intermediate,
which is subsequently completely activated by plasma
carboxypeptidases to chemerin, an adipokine and chemo-
attractant. The formation of the intermediates via FXIa
could be enhanced by the addition of phospholipids to
plasma or in the presence of platelets.35 The interaction
of FXI and the GPIb receptor on platelets and its linkage to
inflammation and coagulation has also been investigated in
previous studies, in which an impact of thrombin-activated
FXI bound to platelets in arterial hypertension was
demonstrated.36

In vivo, data show the contribution of FXIa to intrinsic
coagulation. Infusion of purified FXIa into chimpanzees
resulted in activation of the factors IX, X, and prothrombin
demonstrating that FXIa is an important factor in the coagu-
lation cascade.37 In addition, it has also been shown that the
inhibition of FXIa caused an increase of fibrinolysis in a
thrombosis model in rabbits due to decreased activation of
TAFI by thrombin possibly contributing to the mild-bleeding
phenotype in some FXI-deficient individuals.38 Recently,
Mohammed et al also provided insights in the role of FXIa
acting downstream of FIX in vivo by showing that the
infusion of FXIa or increasing the plasmatic FXI level up to
200% reduced thebleeding time in a saphenous vein bleeding
model in FIX�/� mice indicating an involvement of FXI

pathways independent of FIX.39 Further investigations are
needed to determine the role of the possible alternative
pathways in hemostasis or thrombosis.

FXIa is inhibited by binding of several proteins. In vivo,
C1 inhibitor is the dominant inhibitor (68% of FXIa in
complex with the inhibitor), followed by α-2 antiplasmin
(13%), α1-antitrypsin (α1-AT, 10%) and antithrombin III
(9%).40 Almost all FXIa-inhibitor complexes had a half-life
of 95 to 104minutes, while the half-life of the FXIa-a1AT
complexes was 349minutes.40 Recently, it was demon-
strated that FXIa can also form a complex with endothelial
plasminogen activator inhibitor-1 (PAI-1), thereby inhibit-
ing FXIa activity. These complexes were also observed in a
baboon model of Staphylococcus aureus, suggesting that
the complex formation with PAI-1 leads to clearance of
FXIa.41

Prekallikrein(Kallikrein) Structure

PK is the 85 to 88 kDa precursor of the serine protease PKa
and circulates in plasma at a concentration of approximate-
ly 580 nM. It is mainly expressed in hepatocytes.42 Howev-
er, mRNA of PK was also found in nonhepatic cells, such as
endothelial cells, fibroblasts, leukocytes, and in extrahepat-
ic tissues. PK expressed in nonhepatic cells and tissues
might contribute to local actions, but its physiological
role is not completely understood.43,44 The amino acid
sequence of PK is 58% identical to that of FXI. The zymogen
contains, such as FXI, the characteristic four apple domains
that are comprised of 90 to 91 amino acids (►Fig. 1) each,
but there is a major structural difference between both
zymogens. While FXI comprises two identical subunits
linked to each other, PK only has one subunit and does
not form a dimeric structure.42,45 PK is mostly bound to HK
in a noncovalent complex.46 HK facilitates the activation of
PK by FXIIa and on the other hand, serves as a natural
substrate for PKa, which cleaves HK to liberate the potent
pro-inflammatory peptide bradykinin (BK).12,42 The com-
plex with HK also allows PK to interact with cells such as
endothelial cells,47 platelets,48 and neutrophils.49 The HK
binding sites in PK are situated in the domains A1, A2, and
A4, whereby the A2 domain seems to be most important for
complex formation with the D6H domain of HK (►Fig. 1).
The A3 domain is, however, not involved.50

PK is activated by cleavage of the Arg371–Ile372 bond
(►Fig. 1). The active enzyme PKa consists of a heavy chain
(371 residues) and a light chain (248 residues) that are
connected to each other via a disulfide bond.42 A recent
study provided a full-length crystal structure for PKa.51

Compared to the dimeric FXI structure, there is a conforma-
tional difference in the apple 4 domain that may explain the
monomeric structure of PKa. There is also a large conforma-
tional difference in the A3 domain and a 180 degrees rear-
rangement of the apple domains relative to the protease
domain compared with the FXI structure. This indicates that
a conformational change occurs upon activation of PK.51

However, this still needs to be confirmed by comparison
with a crystal structure of PK.
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Prekallikrein Activation and Function

The plasma contact activation system comprises a group of
proteins including FXII, PK, FXI, and HK, which are activated
upon binding of FXII to negatively charged surfaces. FXII
undergoes a conformational change during binding, causing
the protein to autoactivate to FXIIa. Besides activating FXI, as
discussed before, FXIIa also cleaves PK to form the enzyme
PKa (►Fig. 2). PKa in turn activates FXII, thereby amplifying
the initiation of the FXIIa-mediated intrinsic coagulation
cascade.

PK can also be activated to PKa independently of FXII.
Prolylcarboxypeptidase expressed by endothelial cells for
instance was found to activate PK when bound to cells52,53

and also heat shock protein 90 has been considered as an
activator of PK, possibly by enhancing its autoactivation.54

Recently, we demonstrated that PKa contributes to coag-
ulation in a FXI-independent manner. In the absence of FXI,
activation of FXII on ellagic acid or long-chain polyphos-
phates led to thrombin generation in human plasma and in a
mousemodel via FIX activation by PKa.55 PKa is also involved
in inflammatory processes mostly via release of the pro-
inflammatory peptide BK out of HK. By binding to its G-
protein coupled B1 or B2 receptors, BK causes vasodilation
and increased vascular permeability (►Fig. 2).56 Besides its
role in coagulation and inflammation, PKa acts on the
fibrinolytic system by activating pro-urokinase-type plas-
minogen activator (pro-uPA) to uPA and on the renin-angio-
tensin system by activating prorenin.57,58 In addition, the
complement pathway can be initiated through cleavage of
the central complement component C3 by PKa.59

Given the fact that PKa is involved in somany pathways, it
is not surprising that this protease is associated with various
diseases. Hereditary angioedema is inmanycases primarily a
consequence of a C1 inhibitor deficiency, which results in
hyperactivity of the kallikrein–kinin signaling pathway.60 In

recent studies, it has been shown that the events in HAE
patients can be reduced in number and severity by the
inhibition of PKa.61,62

In addition, increased PKa activity could be detected in
diabetes patients63 and the protease appears to play a role in
the development of diabetic retinopathy.64

Recent data suggest a role for PKa in processes inducing
neuroinflammation. Göbel et al demonstrated that PK levels
were increased in the central nervous system lesions of
multiple sclerosis patients and that PKa might amplify
leukocyte trafficking by modulating the blood–brain barrier
in a PAR2-dependent manner.65

Furthermore, it has been shown that PKa potentiates
adenosine diphosphate-initiated platelet activation in a
PAR1-dependent manner.66

PKa in plasma is mainly inhibited by endogenous C1
inhibitor (52%) and α2-macroglobulin (48%).67

Animal Models to Study Thrombosis and
Bleeding

Both arterial and venous thrombosis can be studied in
various animal models. Knockout animal models are widely
used to investigate the contribution of coagulation factors to
thrombosis risk (►Table 1). F11�/� mice, first described by
Gailani et al,68 are viable and have a normal reproductive
capacity. Although the activated partial thromboplastin time
is significantly prolonged, the bleeding times of F11�/� mice
are comparable to wild-type mice and they do not exhibit
spontaneous bleedings.68

The role of FXI in arterial thrombus formation was initially
investigated by Rosen et al using F11�/� mice in a ferric
chloride (FeCl3)-induced carotid artery injury model.69 Com-
paredwithwild-typemice, thrombus formationwasmarkedly
reduced in F11�/� mice and infusion of human FXI led to
vessel occlusion times similar to control animals, indicating

Table 1 Contribution of factor XI and prekallikrein to thrombosis in animal models

Arterial thrombosis model Literature Venous thrombosis model Literature

F11�/� ↓ FeCl3 induced thrombus formation (mouse) 69, 70 ↓ FeCl3 induced thrombus
formation (mouse)

72

Klkb1�/� ↓ FeCl3 induced thrombus formation (mouse)
↓ Middle cerebral artery occlusion induced

intracerebral thrombosis (mouse)

75,76,77 ↓ FeCl3 induced thrombus
formation (mouse)

75

FXI antibody ↓ Thrombus formation in a vascular graft
occlusion model (baboon)

73 ↓ FeCl3 induced thrombus
formation (mouse)

105

FXI ASO ↓ Thrombus formation in a vascular graft
occlusion model (baboon)

74 ↓ FeCl3 induced thrombus
formation (mouse)

↓ FeCl3 induced mesenteric
vein thrombosis (mouse)

↓ Stenosis induced
thrombosis (mouse)

108

PK ASO ↓ FeCl3 induced mesenteric
arterial thrombosis (mouse)

79 ↓ FeCl3 induced thrombus
formation (mouse)

↓ Stenosis induced
thrombosis (mouse)

79

Abbreviations: ASO, antisense oligonucleotide; FXI, factor XI; PK, prekallikrein.
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that FXI contributes to arterial thrombus formation.69 This
was confirmed by a comparative study in which the effects of
FIX and FXI deficiencies on arterial thrombosis were investi-
gated in a FeCl3-induced carotid artery injury model in mice
using different concentrations of FeCl3.70 While the vessels in
wild-type mice exposed to 3.5% FeCl3 occluded within
10minutes, F9�/� and F11�/� mice were fully protected from
occlusion at 5% FeCl3 and partially protected at 7.5%
FeCl3. Remarkably, the bleeding time in F11�/� mice was
similar to that of wild-type mice, whereas it was significantly
prolonged in F9�/� mice.70 Interestingly, a recent study
showed that FXI, but not FIX deficiency inmicewith low levels
of TF is associated with increased blood pool size in the
placenta, suggesting a tissue-specific role for FXI in mice.71

Postnatal survival of low TF mice was however dependent on
FIX levels.71 Similar antithrombotic effects of FXI deficiency
could be shown in a FeCl3-induced vena cava thrombosis
mouse model.72

Likewise, the role of FXI in development of thrombosis has
been studied in higher species. A human FXI monoclonal
antibody was used to prevent vascular graft occlusion and to
reduce thrombus formation in a primate thrombosis model.73

In addition, FXI ASO inhibited thrombus formation without
increasing bleeding risk in a primate model.74

To determine the role of PK in the development of
thrombosis, Bird et al used PK-deficient mice showing nor-
mal blood pressure and heart rate.75 Compared with wild-
type mice, PK-deficient mice were completely protected
from occlusion in a 3.5% FeCl3-induced carotid artery injury
model and partially protected at 5% FeCl3, indicating that PK
contributes to arterial thrombosis. In addition, thrombus
weight in a venous thrombosis model induced by 3.5% FeCl3
was significantly reduced in PK-deficient mice compared
with wild-type mice. In contrast to F11�/�mice, PK-deficient
mice had a slightly increased tail bleeding time, but a similar
renal bleeding time compared to wild-type mice.75 The
antithrombotic effect of PK deficiency in arterial thrombosis
was also demonstrated in a FeCl3-induced carotid artery
injurymousemodel by Kokoye et al.76Given the fact that PKa
is an important activator of FXII and vice versa, it is not
surprising that FXII-deficient mice were also protected from
carotid artery occlusion.76

Since PK is not only involved in contact activation, but also
induces the kinin-pathway, Göb et al investigated whether
PKa contributes to thromboinflammation. In transient and
permanent models of ischemic stroke PK-deficient mice had
reduced intracerebral thrombosis and improved cerebral
blood flow compared with wild-type mice, while infarct-
associated hemorrhage was not increased.77 A similar out-
come could be observed using a PK-specific antibody.77

In addition, there is evidence that PK also contributes to
arterial thrombosis independently of FXII. It has been shown
that PK deficiency inmice resulted in increased generation of
prostacyclin leading to reduced vascular TF expression.78

Selective depletion of PK by ASO was also found to be
thrombo-protective in arterial and venous thrombosis
mouse models without increasing the bleeding risk.79 How-
ever, contradictory results exist indicating a pro-thrombotic

effect in PK-deficientmice, for instancewhen prolyl carboxy-
peptidase as activator of PK is depleted simultaneously.80

The results of these animal studies (►Table 1) strongly
support the hypothesis that both, FXI and PK, play a role in
the development of thrombosis and that the zymogens or
their activated forms could be suitable drug targets to reduce
the risk of thrombosis. Whether their respective impact
might differ quantitatively remains to be elucidated.

Results from Human Studies and
Deficiencies

FXI deficiency in humans is a rare disorder and was first
described in 1953 by Rosenthal et al.81 This disorder, inher-
ited as an autosomal recessive trait, is more frequently
observed in Ashkenazi Jews. In contrast to FIX or FVIII
deficiency, FXI deficiency, which is defined by levels below
20 IU/dL (severe deficiency), is associatedwith amild-bleed-
ing phenotype with very rare spontaneous bleedings. Bleed-
ing in FXI-deficient subjects is more likely to occur following
trauma or surgery, especially if tissues with high-fibrinolytic
activity are affected.9 The bleeding tendency is, different
from FIX or FVIII deficiency, not correlated with the FXI
level.9,82 Therefore, other hemostatic abnormalities includ-
ing low levels of von Willebrand factor have been suggested
to contribute to the bleeding risk in FXI-deficient subjects.83

There are several studies that examine the role of FXI in
thrombosis in humans. High levels of FXI within the general
population have been identified as risk factor for ischemic
stroke84 and deep vein thrombosis (DVT).85 In addition,
results from the risk of arterial thrombosis in relation to
oral contraceptives case–control study showed an associa-
tion between high levels of FXIa-C1 and FXIa-AT inhibitor
complexes and ischemic stroke in young women.86 A study
with 115 severe FXI-deficient subjects demonstrated that FXI
deficiency might be protective against ischemic stroke.87

Furthermore, the incidence of DVT is reduced in FXI-defi-
cient individuals compared to the incidence in individuals
with normal activity. In the studyof Salomon et al, no cases of
DVT could be reported in 219 individuals with severe FXI
deficiency.88 A lower risk for DVT in FXI-deficient subjects
could be confirmed by a comparative study, in which a
protective effect of FXI deficiency against cardiovascular
events (composite of MI, stroke, and transient ischemic
attack) was observed.89 A recent study investigating the
association between FXI and thrombosis risk in a cohort of
patients with a first unprovoked venous thromboembolism
demonstrated that lower levels of FXI reduced the risk of
recurrent venous thrombosis.90 Taken together, the results
from these epidemiology studies strongly support an asso-
ciation between FXI and ischemic stroke and DVT, respec-
tively, in humans. The contribution of FXI to MI is less clear.
Some data suggest that individuals with FXI deficiency are
not protected from MI,91 while another study observed an
association between FXI andMI.92 In addition,Minnema et al
found a significant increase of FXI activity in patientswithMI
demonstrated by detection of FXIa-C1inhibitor complexes in
24% of the patients with an acute MI (AMI).93 Other studies
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also showed an increase in FXI activation during the acute
phase in AMI patients, either by detection of FXIa-C1 com-
plex levels or by a thrombin generation-based FXIa as-
say.94,95 These studies show that FXI plays an important
role in thrombosis and might be a valuable drug target to
prevent thrombosis (►Table 2).

While FXI deficiency has been described relatively well in
literature, there are fewer studies on PK deficiency in
humans (►Table 2). PK deficiency, also known as “Fletcher
trait”, was first described in a family by Hathaway et al back
in 1965.96 At least 80 reported cases of severe PK deficiency
(levels below 15% of normal), inherited as an autosomal
recessive trait, can be found in literature. However, most
cases of PK deficiency may be undetected since it is clinically
asymptomatic and not associatedwith an increased bleeding
tendency, although individuals with this disorder exhibit a
prolonged aPTT.97 The role of PK as risk factor for thrombosis
in humans is therefore difficult to estimate. In 2011, Girolami
et al hypothesized that deficiency of one of the contact
system proteins may not protect against thrombosis98 and
in 2018, it was stated that PK deficiency often seems to be
associated with CVDs.99 The RATIO case–control study pro-
vides data suggesting that increased PKa levels is associated
with ischemic stroke in young women. In this study, it was
demonstrated that high levels of PKa-C1 inhibitor complexes
led to a fourfold increase in ischemic stroke.86 The associa-
tion of increased PK levels with a higher incidence of arterial
vascular disease such as MI has also been shown in another
study.100 However, there is also evidence that PK levels
cannot be associated with a higher venous thromboembo-
lism risk in the general population.101 Overall, more human
studies have to be carried out to determine if PKa may be
associated with thrombosis risk.

Therapeutic Strategies

The development of direct oral anticoagulants (DOACs) has
improved the treatmentofpatients inneed foranticoagulation,
which was previously dominated by vitamin K antagonists as
the only available oral drug class. In contrast to warfarin, no

routinemonitoring is required.102However, the general risk of
bleeding remains, with a focus on gastrointestinal bleeding102

and other types of mucosa-related bleeds.
There are several therapeutic approaches to target FXI by

inhibiting antibodies, its synthesis by antisense oligonucleo-
tides (ASO), or FXIa by antibodies and small molecule inhib-
itors (summarized in ►Table 3).

Antibodies are characterized by a rapid onset of action,
which depends on the site of application (intravenous vs.
subcutaneous) and usually have a long half-life, requiring
follow-up treatment only after weeks or months. First
human data on safety, pharmacodynamics, and pharmaco-
kinetics of antibodies directed against the active site of FXIa
were derived from a phase 1 study. Compared with controls,
the aPTT was prolonged and FXIa activity was reduced in
cohorts receiving the anti-FXIa antibody osocimab (BAY
1213790).103 Administration of MAA868, an antibody
against FXI and FXIa, also diminished FXIa activity and
increased aPTT in a phase 1 study104 and is currently
investigated in a phase 2 trial (NCT04213807). Anti-FXI
antibodies reduced thrombus formation in a primate mod-
el73 and decreased thrombus size in FXI-deficient mice
administered with human FXI.105

ASOs bind to the RNA of the target protein, thereby
preventing its expression and finally lowering its plasma
concentration.106 Since the impact on FXI levels via synthesis
inhibition by FXI ASO is rather slow, this approach is not
feasible as standalone therapy for early secondary preven-
tion after an event or when urgent protection is needed but
might be more suitable for primary prevention or during
elective procedures. A FXI-directed ASO (IONIS 416858) has
been tested in patients undergoing total knee arthroplasty in
a phase 2 trial, inwhich ASO treated patients were compared
to patients receiving enoxaparin instead. Lowering FXI levels
with 300mg ASO reduced the incidence of venous throm-
boembolism after surgery and the size of the clots without
increasing the bleeding risk.107 These data confirmed the
results obtained from studies in primates74 and mice,108 in
which thrombus formation was reduced without increasing
the bleeding risk.

Table 2 Contribution of factor XI and prekallikrein to thrombosis risk in humans

Findings Literature

High levels of FXI " Ischemic stroke
" Deep vein thrombosis

84, 85

Lower levels of FXI ↓ Recurrent venous thrombosis 90

FXI deficiency ↓ Ischemic stroke
↓ Deep vein thrombosis

87, 88, 89

FXI Association with MI No association with MI 92, 93, 94, 95 91

High PKa/PK levels " Ischemic stroke in young women
" Incidence of arterial vascular disease
! VTE risk in general population

86, 100, 101

PK deficiency ! Thrombosis
Associated with cardiovascular disease

98, 99

Abbreviations: ASO, antisense oligonucleotide; FXI, factor XI; MI, myocardial infarction; PK, prekallikrein; PKa, plasma kallikrein; VTE, venous
thromboembolism.
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Synthetic small molecules can be administered either
parenterally or orally and are suitable for situations, in which
a rapid antithrombotic effect is required. First data on safety,
pharmacodynamics, and pharmacokinetics of a small mole-
cule inhibitor (BMS-962212) was reported in a phase 1 study.
Intravenous administration of the inhibitor to healthy individ-
uals resulted in prolongation of the aPTT and reduction of FXI
activity.109 Several oral FXIa inhibitors are reported to be at
different development stages; while ONO-7684 is reported to
be inphase 1 (NCT03919890),110BMS-986177(NCT03766581,
NCT03891524),111,112 and BAY 2433334 (NCT04218266)113

are currently investigated in phase 2 studies.
The data on PKa as a therapeutic approach in thrombotic

diseases are rather limited compared to FXI. There are some
preclinicaldataon theeffectofASOspecific toPKa. Theefficacy
of ASO was investigated in a mouse model showing that
selective depletion of PKa is thrombo-protective in arterial
and venous thrombosis.79 Ecallantide, a peptidic inhibitor of
PKa,114 and lanadelumab (DX-2930) are registered for HAE,
while active site small molecules inhibitors of PKa (e.g.
BCX7353) demonstrated that this approachmight be effective
in patients with HAE.61,62 However, these inhibitors were not
tested for their antithrombotic effect in clinical studies.

The main advantage of FXI/FXIa inhibition over currently
used antithrombotic strategies is most likely in the area of
safety. Animal studies68,70 and recent clinical trials107,115

indicate that inhibition of FXIa or lower FXI levels reduce
the risk of venous thrombosis without major impairment of
hemostasis. In the previously conducted FOXTROT trial, the
highest dose of osocimab was superior to enoxaparin in
reduction of asymptomatic DVT. In this phase 2 study, a
very low number of relevant bleeding events was found in all
groups.115 Thus, further safety assessment of osocimab will
have to be conducted in future studies.

Inhibition of PKamayalso be a safe antithrombotic strategy
since PK-deficient animals did not show any impairment in

hemostasis as compared with WT animals.75 While limited
data on the antithrombotic effects of PKa inhibitors exist, the
additional anti-inflammatory properties render these inhib-
itors a very interesting approach for the treatment of throm-
boinflammatory diseases.77

Conclusion

Since CVD is still one of the most common causes of
morbidity and mortality worldwide, it remains important
to develop new antithrombotic therapies. However, antith-
rombotic efficacy is consistently linked to bleeding. Based on
risk associations in epidemiologic studies, both with venous
and arterial thromboembolism, recent years spurred an
interest in targeting FXI(a) to reduce the risk of thrombosis.
This development has now proceeded toward extensive
proof-of-concept clinical testing as demonstrated by several
FXI(a) inhibitors entering or completing phase 2 trials in
preventing venous thrombosis. There is potential to expand
toward other indications, including prevention of ischemic
stroke,MI, or prevention of clotting in extracorporeal devices
including extracorporeal membrane oxygenation as these
artificial surfacesmay lead to contact activation. The premise
of FXI(a) inhibitors as effective and safe anticoagulants still
needs to be established for a broader range of indications.

The contribution of the contact system protein PK to the
development of thrombosis is not quite as clear. Although
results from animal studies indicate that depletion of PK
decreases thrombosis risk, there is only limited and somewhat
contradictory clinical data of human studies showing possible
protective effects in humans. More clinical studies in popula-
tions at risk of thrombosis, in PK-deficient individuals or with
compounds registered or developed for HAE are necessary to
investigate the contribution of PK(a) and its inhibition to
thrombosis, its prevention and the impact on bleeding risk.
Considering the role of the kallikrein–kinin pathway in

Table 3 Pharmacological agents targeting factor XI(a) or plasma kallikrein in clinical trials

Mode of action Site of action Reported clinical trial Literature

BAY 1213790 Antibody Adjacent to the FXIa active site Phase 2 115
NCT03276143
NCT0378368

MAA868 Antibody Catalytic domain of FXI and FXIa Phase 2 104
NCT04213807

IONIS 416858 Antisense FXI mRNA Phase 2 107

BMS-962212 Small molecule FXIa inhibitor Phase 1 109

ONO-7684 Small molecule FXIa inhibitor Phase 1 NCT03919890

BMS-986177 Small molecule FXIa inhibitor Phase 2 NCT03891524
NCT03766581

BAY 2433334 Small molecule FXIa inhibitor Phase 2 NCT04218266

Ecallantide Recombinant protein PKa inhibitor Registered for HAE 114

Lanadelumab Antibody PKa active site Registered for HAE 62

BCX7353 Small molecule PKa inhibitor Phase 3 61
NCT03485911

Abbreviations: FXI, factor XI; HAE, hereditary angioedema; PKa, plasma kallikrein.
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inflammatory responses, targeting PKa might be a valuable
approach in reducing thromboinflammation.
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