Semin Liver Dis 2020; 40(03): 307-320
DOI: 10.1055/s-0040-1708876
Review Article

Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis

Michitaka Matsuda
1   Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
,
Ekihiro Seki
1   Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
2   Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
› Author Affiliations
Funding This work was supported by the National Institutes of Health grants R01AA027036, R01DK085252, R21AA025841, and P01CA233452 and by Cedars-Sinai Medical Center (Cedars-Sinai Cancer Center for Integrated Research in Cancer and Lifestyle Award).

Abstract

Chronic liver injury due to viral hepatitis, alcohol abuse, and metabolic disorders is a worldwide health concern. Insufficient treatment of chronic liver injury leads to fibrosis, causing liver dysfunction and carcinogenesis. Most cases of hepatocellular carcinoma (HCC) develop in the fibrotic liver. Pathological features of liver fibrosis include extracellular matrix (ECM) accumulation, mesenchymal cell activation, immune deregulation, and angiogenesis, all of which contribute to the precancerous environment, supporting tumor development. Among liver cells, hepatic stellate cells (HSCs) and macrophages play critical roles in fibrosis and HCC. These two cell types interplay and remodel the ECM and immune microenvironment in the fibrotic liver. Once HCC develops, HCC-derived factors influence HSCs and macrophages to switch to protumorigenic cell populations, cancer-associated fibroblasts and tumor-associated macrophages, respectively. This review aims to summarize currently available data on the roles of HSCs and macrophages in liver fibrosis and HCC, with a focus on their interaction.



Publication History

Article published online:
02 April 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
  • 2 Ferlay J, Soerjomataram I, Dikshit R. , et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136 (05) E359-E386
  • 3 Llovet JM, Zucman-Rossi J, Pikarsky E. , et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2016; 2: 16018
  • 4 Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol 2015; 13 (12) 2140-2151
  • 5 El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 365 (12) 1118-1127
  • 6 Suh B, Park S, Shin DW. , et al. High liver fibrosis index FIB-4 is highly predictive of hepatocellular carcinoma in chronic hepatitis B carriers. Hepatology 2015; 61 (04) 1261-1268
  • 7 Kim MN, Kim SU, Kim BK. , et al. Increased risk of hepatocellular carcinoma in chronic hepatitis B patients with transient elastography-defined subclinical cirrhosis. Hepatology 2015; 61 (06) 1851-1859
  • 8 Wang HM, Hung CH, Lu SN. , et al. Liver stiffness measurement as an alternative to fibrotic stage in risk assessment of hepatocellular carcinoma incidence for chronic hepatitis C patients. Liver Int 2013; 33 (05) 756-761
  • 9 Akima T, Tamano M, Hiraishi H. Liver stiffness measured by transient elastography is a predictor of hepatocellular carcinoma development in viral hepatitis. Hepatol Res 2011; 41 (10) 965-970
  • 10 Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144 (03) 512-527
  • 11 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 12 Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015; 61 (03) 1066-1079
  • 13 Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol 2012; 590 (03) 447-458
  • 14 Inokuchi S, Tsukamoto H, Park E, Liu ZX, Brenner DA, Seki E. Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res 2011; 35 (08) 1509-1518
  • 15 Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147 (03) 577-594.e1
  • 16 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
  • 17 Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest 2017; 127 (01) 55-64
  • 18 Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30 (03) 245-257
  • 19 Campbell JS, Hughes SD, Gilbertson DG. , et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 2005; 102 (09) 3389-3394
  • 20 Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol 2011; 8 (05) 292-301
  • 21 Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R. Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 2015; 45 (03) 326-336
  • 22 Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology 2000; 31 (01) 141-148
  • 23 Zhu AX, Park JO, Ryoo BY. , et al; REACH Trial Investigators. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2015; 16 (07) 859-870
  • 24 Morse MA, Sun W, Kim R. , et al. The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res 2019; 25 (03) 912-920
  • 25 Matsuzawa N, Takamura T, Kurita S. , et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 2007; 46 (05) 1392-1403
  • 26 Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 2013; 58 (04) 1497-1507
  • 27 Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6 (09) 674-687
  • 28 Ma C, Kesarwala AH, Eggert T. , et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531 (7593): 253-257
  • 29 Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121 (07) 977-990
  • 30 Zhang XF, Tan X, Zeng G. , et al. Conditional beta-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor alpha/phosphoinositide 3-kinase signaling. Hepatology 2010; 52 (03) 954-965
  • 31 Seki S, Nakashima H, Nakashima M, Kinoshita M. Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells. Clin Dev Immunol 2011; 2011: 868345
  • 32 Binnewies M, Roberts EW, Kersten K. , et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018; 24 (05) 541-550
  • 33 Chen J, Ji T, Zhao J. , et al. Sorafenib-resistant hepatocellular carcinoma stratified by phosphorylated ERK activates PD-1 immune checkpoint. Oncotarget 2016; 7 (27) 41274-41284
  • 34 Harding JJ, El Dika I, Abou-Alfa GK. Immunotherapy in hepatocellular carcinoma: primed to make a difference?. Cancer 2016; 122 (03) 367-377
  • 35 Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013; 14 (12) 1212-1218
  • 36 Sangro B, Gomez-Martin C, de la Mata M. , et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59 (01) 81-88
  • 37 El-Khoueiry AB, Sangro B, Yau T. , et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 38 Dilek N, Vuillefroy de Silly R, Blancho G, Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol 2012; 3: 208
  • 39 Kapanadze T, Gamrekelashvili J, Ma C. , et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 2013; 59 (05) 1007-1013
  • 40 Schrader J, Gordon-Walker TT, Aucott RL. , et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 2011; 53 (04) 1192-1205
  • 41 Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol 2006; 66 (07) 606-630
  • 42 Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res 2012; 347 (01) 245-256
  • 43 Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest 1989; 84 (06) 1786-1793
  • 44 Pinzani M, Milani S, Herbst H. , et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol 1996; 148 (03) 785-800
  • 45 Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004; 15 (04) 255-273
  • 46 Breitkopf K, Roeyen Cv, Sawitza I, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine 2005; 31 (05) 349-357
  • 47 Czochra P, Klopcic B, Meyer E. , et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 2006; 45 (03) 419-428
  • 48 Kocabayoglu P, Lade A, Lee YA. , et al. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol 2015; 63 (01) 141-147
  • 49 Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 2012; 6 (01) 67-80
  • 50 Seki E, De Minicis S, Osterreicher CH. , et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
  • 51 Roderburg C, Urban GW, Bettermann K. , et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53 (01) 209-218
  • 52 Martin K, Pritchett J, Llewellyn J. , et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 2016; 7: 12502
  • 53 Henderson NC, Sheppard D. Integrin-mediated regulation of TGFβ in fibrosis. Biochim Biophys Acta 2013; 1832 (07) 891-896
  • 54 Henderson NC, Arnold TD, Katamura Y. , et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19 (12) 1617-1624
  • 55 Olaso E, Ikeda K, Eng FJ. , et al. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 2001; 108 (09) 1369-1378
  • 56 Olaso E, Arteta B, Benedicto A, Crende O, Friedman SL. Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages. Am J Pathol 2011; 179 (06) 2894-2904
  • 57 Yang YM, Noureddin M, Liu C. , et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci Transl Med 2019; 11 (496) eaat9284
  • 58 Du K, Hyun J, Premont RT. , et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 2018; 154 (05) 1465-1479.e13
  • 59 Ding BS, Cao Z, Lis R. , et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2014; 505 (7481): 97-102
  • 60 Taura K, De Minicis S, Seki E. , et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 2008; 135 (05) 1729-1738
  • 61 Reynaert H, Urbain D, Geerts A. Regulation of sinusoidal perfusion in portal hypertension. Anat Rec (Hoboken) 2008; 291 (06) 693-698
  • 62 Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci 2002; 7: d1899-d1914
  • 63 Chang J, Hisamatsu T, Shimamura K. , et al. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol Res 2013; 43 (06) 658-669
  • 64 Mühlbauer M, Fleck M, Schütz C. , et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol 2006; 45 (04) 520-528
  • 65 Mederacke I, Hsu CC, Troeger JS. , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 66 Kisseleva T. The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology 2017; 65 (03) 1039-1043
  • 67 Iwaisako K, Jiang C, Zhang M. , et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 2014; 111 (32) E3297-E3305
  • 68 Ju MJ, Qiu SJ, Fan J. , et al. Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 2009; 131 (04) 498-510
  • 69 Mikula M, Proell V, Fischer AN, Mikulits W. Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 2006; 209 (02) 560-567
  • 70 Lau EY, Lo J, Cheng BY. , et al. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep 2016; 15 (06) 1175-1189
  • 71 Dapito DH, Mencin A, Gwak GY. , et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21 (04) 504-516
  • 72 Amann T, Bataille F, Spruss T. , et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009; 100 (04) 646-653
  • 73 Neaud V, Faouzi S, Guirouilh J. , et al. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 1997; 26 (06) 1458-1466
  • 74 Zhao W, Zhang L, Yin Z. , et al. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 2011; 129 (11) 2651-2661
  • 75 Zhao W, Su W, Kuang P. , et al. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol 2012; 41 (02) 457-464
  • 76 Ji J, Eggert T, Budhu A. , et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 2015; 62 (02) 481-495
  • 77 Khalili JS, Liu S, Rodríguez-Cruz TG. , et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 2012; 18 (19) 5329-5340
  • 78 Calvo F, Ege N, Grande-Garcia A. , et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 2013; 15 (06) 637-646
  • 79 Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 2002; 32 (03) 355-357
  • 80 Patocs A, Zhang L, Xu Y. , et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 2007; 357 (25) 2543-2551
  • 81 Lujambio A, Akkari L, Simon J. , et al. Non-cell-autonomous tumor suppression by p53. Cell 2013; 153 (02) 449-460
  • 82 Yoshimoto S, Loo TM, Atarashi K. , et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456): 97-101
  • 83 Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016; 44 (03) 439-449
  • 84 Knolle PA, Germann T, Treichel U. , et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol 1999; 162 (03) 1401-1407
  • 85 Heymann F, Peusquens J, Ludwig-Portugall I. , et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015; 62 (01) 279-291
  • 86 Huang LR, Wohlleber D, Reisinger F. , et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 2013; 14 (06) 574-583
  • 87 Enomoto N, Yamashina S, Kono H. , et al. Development of a new, simple rat model of early alcohol-induced liver injury based on sensitization of Kupffer cells. Hepatology 1999; 29 (06) 1680-1689
  • 88 Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 2001; 34 (01) 101-108
  • 89 Mandrekar P, Ambade A, Lim A, Szabo G, Catalano D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 2011; 54 (06) 2185-2197
  • 90 Scott CL, Guilliams M. The role of Kupffer cells in hepatic iron and lipid metabolism. J Hepatol 2018; 69 (05) 1197-1199
  • 91 Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol 2018; 330: 27-42
  • 92 Fogg DK, Sibon C, Miled C. , et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006; 311 (5757): 83-87
  • 93 Xu J, Chi F, Guo T. , et al. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest 2015; 125 (04) 1579-1590
  • 94 Scott CL, Zheng F, De Baetselier P. , et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7: 10321
  • 95 David BA, Rezende RM, Antunes MM. , et al. Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 2016; 151 (06) 1176-1191
  • 96 Devisscher L, Scott CL, Lefere S. , et al. Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol 2017; 322: 74-83
  • 97 Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 2012; 302 (11) G1310-G1321
  • 98 Seki E, De Minicis S, Gwak GY. , et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest 2009; 119 (07) 1858-1870
  • 99 Friedman SL, Ratziu V, Harrison SA. , et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 2018; 67 (05) 1754-1767
  • 100 Baeck C, Wehr A, Karlmark KR. , et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 2012; 61 (03) 416-426
  • 101 Krenkel O, Puengel T, Govaere O. , et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 2018; 67 (04) 1270-1283
  • 102 Itoh M, Suganami T, Kato H. , et al. CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight 2017; 2 (22) 92902
  • 103 Satoh T, Nakagawa K, Sugihara F. , et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 2017; 541 (7635): 96-101
  • 104 Ramachandran P, Dobie R, Wilson-Kanamori JR. , et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783): 512-518
  • 105 Miura K, Kodama Y, Inokuchi S. , et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 2010; 139 (01) 323-34.e7
  • 106 Naugler WE, Sakurai T, Kim S. , et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317 (5834): 121-124
  • 107 Song IJ, Yang YM, Inokuchi-Shimizu S, Roh YS, Yang L, Seki E. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer 2018; 142 (01) 81-91
  • 108 Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 2005; 437 (7055): 141-146
  • 109 DuPage M, Cheung AF, Mazumdar C. , et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 2011; 19 (01) 72-85
  • 110 Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015; 36 (04) 265-276
  • 111 Wherry EJ. T cell exhaustion. Nat Immunol 2011; 12 (06) 492-499
  • 112 Lahmar Q, Keirsse J, Laoui D, Movahedi K, Van Overmeire E, Van Ginderachter JA. Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochim Biophys Acta 2016; 1865 (01) 23-34
  • 113 Zhu Y, Herndon JM, Sojka DK. , et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 2017; 47 (02) 323-338.e6
  • 114 Franklin RA, Liao W, Sarkar A. , et al. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344 (6186): 921-925
  • 115 Gunderson AJ, Kaneda MM, Tsujikawa T. , et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov 2016; 6 (03) 270-285
  • 116 Kaneda MM, Messer KS, Ralainirina N. , et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016; 539 (7629): 437-442
  • 117 Matsuda M, Tsurusaki S, Miyata N. , et al. Oncostatin M causes liver fibrosis by regulating cooperation between hepatic stellate cells and macrophages in mice. Hepatology 2018; 67 (01) 296-312
  • 118 Pradere JP, Kluwe J, De Minicis S. , et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58 (04) 1461-1473
  • 119 Fallowfield JA, Mizuno M, Kendall TJ. , et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007; 178 (08) 5288-5295
  • 120 Ramachandran P, Pellicoro A, Vernon MA. , et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (46) E3186-E3195
  • 121 Duffield JS, Forbes SJ, Constandinou CM. , et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115 (01) 56-65
  • 122 Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V. , et al. The innate immune receptor TREM-1 promotes liver injury and fibrosis. J Clin Invest 2018; 128 (11) 4870-4883
  • 123 Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326 (5957): 1216-1219
  • 124 Georges PC, Hui JJ, Gombos Z. , et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 2007; 293 (06) G1147-G1154
  • 125 Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta 2013; 1832 (07) 876-883
  • 126 Afik R, Zigmond E, Vugman M. , et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 2016; 213 (11) 2315-2331
  • 127 Madsen DH, Jürgensen HJ, Siersbæk MS. , et al. Tumor-associated macrophages derived from circulating inflammatory monocytes degrade collagen through cellular uptake. Cell Rep 2017; 21 (13) 3662-3671
  • 128 Karsdal MA, Manon-Jensen T, Genovese F. , et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308 (10) G807-G830
  • 129 Walsh LA, Nawshad A, Medici D. Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition. Matrix Biol 2011; 30 (04) 243-247
  • 130 Larsen AMH, Kuczek DE, Kalvisa A. , et al. Collagen density modulates the immunosuppressive functions of tumor-associated macrophages. bioRxiv 2019; 513986
  • 131 Lai KK, Shang S, Lohia N. , et al. Extracellular matrix dynamics in hepatocarcinogenesis: a comparative proteomics study of PDGFC transgenic and Pten null mouse models. PLoS Genet 2011; 7 (06) e1002147
  • 132 Lorenzini S, Bird TG, Boulter L. , et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut 2010; 59 (05) 645-654
  • 133 Dubuquoy L, Louvet A, Lassailly G. , et al. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 2015; 64 (12) 1949-1960
  • 134 Santamato A, Fransvea E, Dituri F. , et al. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin Sci (Lond) 2011; 121 (04) 159-168
  • 135 Baghy K, Dezso K, László V. , et al. Ablation of the decorin gene enhances experimental hepatic fibrosis and impairs hepatic healing in mice. Lab Invest 2011; 91 (03) 439-451
  • 136 Baghy K, Horváth Z, Regős E. , et al. Decorin interferes with platelet-derived growth factor receptor signaling in experimental hepatocarcinogenesis. FEBS J 2013; 280 (10) 2150-2164
  • 137 Li JH, Wang YC, Qin CD. , et al. Over expression of hyaluronan promotes progression of HCC via CD44-mediated pyruvate kinase M2 nuclear translocation. Am J Cancer Res 2016; 6 (02) 509-521
  • 138 Piccioni F, Fiore E, Bayo J. , et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology 2015; 25 (08) 825-835
  • 139 Sukowati CHC, Anfuso B, Fiore E. , et al. Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis. Sci Rep 2019; 9 (01) 4026
  • 140 Levental KR, Yu H, Kass L. , et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139 (05) 891-906
  • 141 Liu SB, Ikenaga N, Peng ZW. , et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J 2016; 30 (04) 1599-1609
  • 142 Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007; 121 (01) 1-14
  • 143 Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010; 31 (06) 220-227
  • 144 Hoechst B, Ormandy LA, Ballmaier M. , et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135 (01) 234-243
  • 145 Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 2013; 73 (08) 2435-2444
  • 146 Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 2010; 59 (10) 1593-1600
  • 147 Arihara F, Mizukoshi E, Kitahara M. , et al. Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 2013; 62 (08) 1421-1430
  • 148 Almand B, Clark JI, Nikitina E. , et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166 (01) 678-689
  • 149 Hsieh CC, Hung CH, Chiang M, Tsai YC, He JT. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling. Int J Mol Sci 2019; 20 (20) E5079
  • 150 Hsieh CC, Chou HS, Yang HR. , et al. The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 2013; 121 (10) 1760-1768
  • 151 Höchst B, Schildberg FA, Sauerborn P. , et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 2013; 59 (03) 528-535
  • 152 Zhao W, Zhang L, Xu Y. , et al. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest 2014; 94 (02) 182-191
  • 153 Resheq YJ, Li KK, Ward ST. , et al. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells. J Immunol 2015; 194 (06) 2578-2586
  • 154 Xu Y, Zhao W, Xu J. , et al. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 2016; 7 (08) 8866-8878
  • 155 Xu Y, Fang F, Jiao H. , et al. Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunol Immunother 2019; 68 (12) 1959-1969
  • 156 Liu C, Chen X, Yang L, Kisseleva T, Brenner DA, Seki E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem 2014; 289 (10) 7082-7091
  • 157 Tarrats N, Moles A, Morales A, García-Ruiz C, Fernández-Checa JC, Marí M. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology 2011; 54 (01) 319-327
  • 158 Osawa Y, Hoshi M, Yasuda I, Saibara T, Moriwaki H, Kozawa O. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells. PLoS One 2013; 8 (06) e65251
  • 159 Tomita K, Tamiya G, Ando S. , et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55 (03) 415-424
  • 160 Baeck C, Wei X, Bartneck M. , et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology 2014; 59 (03) 1060-1072
  • 161 Seki E, de Minicis S, Inokuchi S. , et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009; 50 (01) 185-197
  • 162 Zheng X, Liu W, Xiang J. , et al. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin β1/FAK signaling pathway in nonalcoholic fatty liver. Oncotarget 2017; 8 (56) 95586-95595
  • 163 Xie B, Lin W, Ye J. , et al. DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J Exp Clin Cancer Res 2015; 34: 101
  • 164 Hahn E, Wick G, Pencev D, Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut 1980; 21 (01) 63-71
  • 165 Mak KM, Chen LL, Lee TF. Codistribution of collagen type IV and laminin in liver fibrosis of elderly cadavers: immunohistochemical marker of perisinusoidal basement membrane formation. Anat Rec (Hoboken) 2013; 296 (06) 953-964
  • 166 Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A 1997; 94 (25) 13612-13617
  • 167 Hamano Y, Zeisberg M, Sugimoto H. , et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003; 3 (06) 589-601