Semin Thromb Hemost 2020; 46(03): 357-365
DOI: 10.1055/s-0040-1708542
Review Article

Platelet Count and Function during Pediatric Extracorporeal Membrane Oxygenation

Katherine Cashen
1   Department of Pediatrics, Division of Critical Care Medicine, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
,
Kathleen Meert
1   Department of Pediatrics, Division of Critical Care Medicine, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan
,
Heidi J. Dalton
2   Department of Pediatrics, Division of Critical Care Medicine, INOVA Heart and Vascular Institute, Inova Fairfax Medical Institute, Falls Church, Virginia
3   George Washington University, Washington, Dist. of Columbia
› Author Affiliations

Abstract

Extracorporeal membrane oxygenation (ECMO) is a form of life support used to treat neonates, children, and adults with cardiorespiratory failure refractory to conventional therapy. This therapy requires the use of anticoagulation to prevent clotting in the extracorporeal circuit, but anticoagulation also increases the risk of bleeding on ECMO. Both bleeding and thrombosis remain significant complications on ECMO and balancing these risks is challenging. Acquired platelet dysfunction is common during ECMO and quantitative and qualitative platelet dysfunction contributes to bleeding risk. Optimal platelet count, function, and transfusion thresholds are not well established during pediatric ECMO. In this review, we provide an overview of hemostatic alterations during ECMO, changes in platelet count and function, platelet monitoring techniques, bleeding risk, and future needs to best optimize patient management and care.



Publication History

Publication Date:
31 March 2020 (online)

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 International Summary Extracorporeal Life Support Organization. 2019 . Accessed July 25, 2019 at: https://www.elso.org/Registry/Statistics/InternationalSummary.aspx
  • 2 Barbaro RP, Paden ML, Guner YS. et al; ELSO member centers. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J 2017; 63 (04) 456-463
  • 3 Dalton HJ, Reeder R, Garcia-Filion P. et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Factors associated with bleeding and thrombosis in children receiving extracorporeal membrane oxygenation. Am J Respir Crit Care Med 2017; 196 (06) 762-771
  • 4 Dalton HJ, Garcia-Filion P, Holubkov R. et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Association of bleeding and thrombosis with outcome in extracorporeal life support. Pediatr Crit Care Med 2015; 16 (02) 167-174
  • 5 Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood 1992; 80 (08) 1998-2005
  • 6 Toulon P. Developmental hemostasis: laboratory and clinical implications. Int J Lab Hematol 2016; 38 (Suppl. 01) 66-77
  • 7 Monagle P, Barnes C, Ignjatovic V. et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006; 95 (02) 362-372
  • 8 Strauss T, Sidlik-Muskatel R, Kenet G. Developmental hemostasis: primary hemostasis and evaluation of platelet function in neonates. Semin Fetal Neonatal Med 2011; 16 (06) 301-304
  • 9 Roschitz B, Sudi K, Köstenberger M, Muntean W. Shorter PFA-100 closure times in neonates than in adults: role of red cells, white cells, platelets and von Willebrand factor. Acta Paediatr 2001; 90 (06) 664-670
  • 10 Bednarek FJ, Bean S, Barnard MR, Frelinger AL, Michelson AD. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res 2009; 124 (01) 42-45
  • 11 Deschmann E, Sola-Visner M, Saxonhouse MA. Primary hemostasis in neonates with thrombocytopenia. J Pediatr 2014; 164 (01) 167-172
  • 12 Katz JA, Moake JL, McPherson PD. et al. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood 1989; 73 (07) 1851-1858
  • 13 Favaloro EJ, Lippi G. Translational aspects of developmental hemostasis: infants and children are not miniature adults and even adults may be different. Ann Transl Med 2017; 5 (10) 212-216
  • 14 Ignjatovic V, Ilhan A, Monagle P. Evidence for age-related differences in human fibrinogen. Blood Coagul Fibrinolysis 2011; 22 (02) 110-117
  • 15 Ranucci M, Baryshnikova E, Cotza M. et al; Group for the Surgical and Clinical Outcome Research (SCORE). Coagulation monitoring in postcardiotomy ECMO: conventional tests, point-of-care, or both?. Minerva Anestesiol 2016; 82 (08) 858-866
  • 16 Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res 2016; 118 (09) 1392-1408
  • 17 Despotis GJ, Avidan MS, Hogue Jr CW. Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg 2001; 72 (05) S1821-S1831
  • 18 Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth 2011; 21 (01) 31-42
  • 19 Annich G, Adachi I. Anticoagulation for pediatric mechanical circulatory support. Pediatr Crit Care Med 2013; 14 (05, Suppl 1): S37-S42
  • 20 Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 1997; 112 (03) 676-692
  • 21 Peek GJ, Firmin RK. The inflammatory and coagulative response to prolonged extracorporeal membrane oxygenation. ASAIO J 1999; 45 (04) 250-263
  • 22 Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980; 55 (01) 156-159
  • 23 Wendel HP, Ziemer G. Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur J Cardiothorac Surg 1999; 16 (03) 342-350
  • 24 Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care 2016; 20 (01) 387
  • 25 Doyle AJ, Hunt BJ. Current understanding of how extracorporeal membrane oxygenators activate haemostasis and other blood components. Front Med (Lausanne) 2018; 5 (352) 352
  • 26 Plötz FB, van Oeveren W, Bartlett RH, Wildevuur CR. Blood activation during neonatal extracorporeal life support. J Thorac Cardiovasc Surg 1993; 105 (05) 823-832
  • 27 Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med 2013; 14 (02) e77-e84
  • 28 Hirsh J, Anand SS, Halperin JL, Fuster V. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol 2001; 21 (07) 1094-1096
  • 29 Wildhagen KC, García de Frutos P, Reutelingsperger CP. et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 2014; 123 (07) 1098-1101
  • 30 Cassinelli G, Naggi A. Old and new applications of non-anticoagulant heparin. Int J Cardiol 2016; 212 (Suppl. 01) S14-S21
  • 31 Griffith MJ. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem 1982; 257 (13) 7360-7365
  • 32 Byrnes JW, Swearingen CJ, Prodhan P, Fiser R, Dyamenahalli U. Antithrombin III supplementation on extracorporeal membrane oxygenation: impact on heparin dose and circuit life. ASAIO J 2014; 60 (01) 57-62
  • 33 Morrisette MJ, Zomp-Wiebe A, Bidwell KL. et al. Antithrombin supplementation in adult patients receiving extracorporeal membrane oxygenation. Perfusion 2019; 35 (01) 66-72
  • 34 Todd Tzanetos DR, Myers J, Wells T, Stewart D, Fanning JJ, Sullivan JE. The use of recombinant antithrombin III in pediatric and neonatal ECMO patients. ASAIO J 2017; 63 (01) 93-98
  • 35 Stansfield BK, Wise L, Ham III PB. et al. Outcomes following routine antithrombin III replacement during neonatal extracorporeal membrane oxygenation. J Pediatr Surg 2017; 52 (04) 609-613
  • 36 Wong TE, Nguyen T, Shah SS, Brogan TV, Witmer CM. Antithrombin concentrate use in pediatric extracorporeal membrane oxygenation: a multicenter cohort study. Pediatr Crit Care Med 2016; 17 (12) 1170-1178
  • 37 Bridges BC, Ranucci M, Lequier LL. Anticoagulation and disorders of hemostasis. In: Brogan TV, Lequier L, Lorusso R, MacLaren G, Peek G. eds. Extracorporeal Life Support: The ELSO Red Book. Ann Arbor, MI: Extracorporeal Life Support Organization; 2017: 93-104
  • 38 Avila ML, Shah V, Brandão LR. Systematic review on heparin-induced thrombocytopenia in children: a call to action. J Thromb Haemost 2013; 11 (04) 660-669
  • 39 Castle V, Andrew M, Kelton J, Giron D, Johnston M, Carter C. Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 1986; 108 (5 Pt 1): 749-755
  • 40 Wiedmeier SE, Henry E, Sola-Visner MC, Christensen RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009; 29 (02) 130-136
  • 41 Saini A, West AN, Harrell C. et al. Platelet transfusion in the PICU: does disease severity matter?. Pediatr Crit Care Med 2018; 19 (09) e472-e478
  • 42 Nellis ME, Karam O, Mauer E. et al; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) network, Pediatric Critical Care Blood Research Network (BloodNet), and the P3T Investigators. Platelet transfusion practices in critically ill children. Crit Care Med 2018; 46 (08) 1309-1317
  • 43 Agrawal S, Sachdev A, Gupta D, Chugh K. Platelet counts and outcome in the pediatric intensive care unit. Indian J Crit Care Med 2008; 12 (03) 102-108
  • 44 Cheung PY, Sawicki G, Salas E, Etches PC, Schulz R, Radomski MW. The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates. Crit Care Med 2000; 28 (07) 2584-2590
  • 45 Robinson TM, Kickler TS, Walker LK, Ness P, Bell W. Effect of extracorporeal membrane oxygenation on platelets in newborns. Crit Care Med 1993; 21 (07) 1029-1034
  • 46 Cashen K, Dalton H, Reeder RW. et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network (CPCCRN). Platelet transfusion practice and related outcomes in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med 2020; 21 (02) 178-185
  • 47 Lukito P, Wong A, Jing J. et al. Mechanical circulatory support is associated with loss of platelet receptors glycoprotein Ibα and glycoprotein VI. J Thromb Haemost 2016; 14 (11) 2253-2260
  • 48 Pasala S, Fiser RT, Stine KC, Swearingen CJ, Prodhan P. von Willebrand factor multimers in pediatric extracorporeal membrane oxygenation support. ASAIO J 2014; 60 (04) 419-423
  • 49 Kubicki R, Stiller B, Siepe M. et al. Acquired von Willebrand syndrome in pediatric patients during mechanical circulatory support. Eur J Cardiothorac Surg 2019; 55 (06) 1194-1201
  • 50 Italiano Jr JE, Mairuhu ATA, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 2010; 17 (06) 578-584
  • 51 Meyer AD, Gelfond JA, Wiles AA, Freishtat RJ, Rais-Bahrami K. Platelet-derived microparticles generated by neonatal extracorporeal membrane oxygenation systems. ASAIO J 2015; 61 (01) 37-42
  • 52 Hvas AM, Favaloro EJ. Platelet function testing in pediatric patients. Expert Rev Hematol 2017; 10 (04) 281-288
  • 53 Laine A, Niemi T, Suojaranta-Ylinen R. et al. Decreased maximum clot firmness in rotational thromboelastometry (ROTEM®) is associated with bleeding during extracorporeal mechanical circulatory support. Perfusion 2016; 31 (08) 625-633
  • 54 Tauber H, Streif W, Fritz J. et al. Predicting transfusion requirements during extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth 2016; 30 (03) 692-701
  • 55 Kalbhenn J, Schlagenhauf A, Rosenfelder S, Schmutz A, Zieger B. Acquired von Willebrand syndrome and impaired platelet function during venovenous extracorporeal membrane oxygenation: rapid onset and fast recovery. J Heart Lung Transplant 2018; 37 (08) 985-991
  • 56 Hase T, Sirajuddin S, Maluso P, Bangalore R, DePalma L, Sarani B. Platelet dysfunction in critically ill patients. Blood Coagul Fibrinolysis 2017; 28 (06) 475-478
  • 57 Chung JH, Yeo HJ, Kim D. et al. Changes in the levels of beta-thromboglobulin and inflammatory mediators during extracorporeal membrane oxygenation support. Int J Artif Organs 2017; 40 (10) 575-580
  • 58 Sagedal S, Sandvik L, Klingenberg O, Sandset PM. β-Thromboglobulin may not reflect platelet activation during haemodialysis with the HeprAN membrane. Scand J Clin Lab Invest 2017; 77 (08) 679-684
  • 59 Saini A, Hartman ME, Gage BF. et al. Incidence of platelet dysfunction by thromboelastography-platelet mapping in children supported with ECMO: a pilot retrospective study. Front Pediatr 2016; 3: 116
  • 60 Curley A, Stanworth SJ, Willoughby K. et al; PlaNeT2 MATISSE Collaborators. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019; 380 (03) 242-251
  • 61 Dalton HJ, Cashen K, Reeder RW. et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network (CPCCRN). Hemolysis during pediatric extracorporeal membrane oxygenation: associations with circuitry, complications, and mortality. Pediatr Crit Care Med 2018; 19 (11) 1067-1076
  • 62 Da Q, Teruya M, Guchhait P, Teruya J, Olson JS, Cruz MA. Free hemoglobin increases von Willebrand factor-mediated platelet adhesion in vitro: implications for circulatory devices. Blood 2015; 126 (20) 2338-2341
  • 63 Stallion A, Cofer BR, Rafferty JA, Ziegler MM, Ryckman FC. The significant relationship between platelet count and haemorrhagic complications on ECMO. Perfusion 1994; 9 (04) 265-269
  • 64 Downard CD, Betit P, Chang RW, Garza JJ, Arnold JH, Wilson JM. Impact of AMICAR on hemorrhagic complications of ECMO: a ten-year review. J Pediatr Surg 2003; 38 (08) 1212-1216
  • 65 Bridges BC, Ranucci M, Lequier LL. “Anticoagulation and disorders of haemostasis. In: Brogan RV, Lequier L, Lorusso R, MacLaren G, Peek G. eds. Extracorporeal Life Support: The ELSO Red Book. 5th ed. Ann Arbor, MI: ELSO; 2017: 93-103
  • 66 Long MT, Wagner D, Maslach-Hubbard A, Pasko DA, Baldridge P, Annich GM. Safety and efficacy of recombinant activated factor VII for refractory hemorrhage in pediatric patients on extracorporeal membrane oxygenation: a single center review. Perfusion 2014; 29 (02) 163-170
  • 67 Veldman A, Neuhaeuser C, Akintuerk H. et al. rFVIIa in the treatment of persistent hemorrhage in pediatric patients on ECMO following surgery for congenital heart disease. Paediatr Anaesth 2007; 17 (12) 1176-1181
  • 68 Ranucci M, Ballotta A, Kandil H. et al; Surgical and Clinical Outcome Research Group. Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Crit Care 2011; 15 (06) R275
  • 69 Nagle EL, Dager WE, Duby JJ. et al. Bivalirudin in pediatric patients maintained on extracorporeal life support. Pediatr Crit Care Med 2013; 14 (04) e182-e188
  • 70 Korn RL, Fisher CA, Livingston ER. et al. The effects of Carmeda bioactive surface on human blood components during simulated extracorporeal circulation. J Thorac Cardiovasc Surg 1996; 111 (05) 1073-1084
  • 71 Ontaneda A, Annich GM. Novel surfaces in extracorporeal membrane oxygenation circuits. Front Med (Lausanne) 2018; 5: 321
  • 72 Arroyo AB, Reyes-Garcia Ascension M, Teruel-Montoya R, Vicente V, Gonzalez-Conejero R, Martinez C. microRNAs in the haemostatic system: more than witnesses of thromboembolic disease?. Thromb Res 2018; 166: 1-9
  • 73 Bijak M, Dzieciol M, Rywaniak J, Saluk J, Zielinska M. Platelets miRNA as a prediction marker of thrombotic episodes. Dis Markers 2016; 2016: 2872507
  • 74 Sunderland N, Skroblin P, Barwari T. et al. MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ Res 2017; 120 (02) 418-435