Synlett 2020; 31(16): 1603-1607
DOI: 10.1055/s-0040-1707901
letter
© Georg Thieme Verlag Stuttgart · New York

Decarboxylative Bromination of Heteroarenes: Initial Mechanistic Insights

Pritesh R. Patel
a   School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
,
Scott H. Henderson
b   Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9RH, UK
,
Mark S. Roe
c   School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
,
Mark A. Honey
d   School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Kent, ME4 4TB, UK   Email: m.a.honey@gre.ac.uk
› Author Affiliations
Biotechnology and Biological Sciences Research Council (BB/L017105/1).
Further Information

Publication History

Received: 11 June 2020

Accepted after revision: 30 June 2020

Publication Date:
17 July 2020 (online)


Abstract

After an initial report from our laboratory describing metal-free decarboxylative halogenation of various azaheteroarenes, we set out to investigate the possible mechanism by which this chemistry occurs. Evidence from this mechanistic investigation suggests that this chemistry occurs via a radical pathway, with 1H NMR studies suggesting that the acidic substrates activate NBS.

Supporting Information

 
  • References and Notes

  • 1 Pozharskii AF, Soldatenkov AT, Katritzky AR. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed. Wiley; Chichester: 2011
  • 2 Heterocyclic Chemistry in Drug Discovery. Li JJ. Wiley; Hoboken: 2013
  • 3 Pathak TP, Miller SJ. J. Am. Chem. Soc. 2012; 134: 6120
  • 4 Chung W.-J, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
  • 5 Bacsa I, Herman BE, Jójárt R, Herman KS, Wölfling J, Schneider G, Varga M, Tömböly C, Rižne TL, Szécsi M, Mernyák EJ. Enzyme Inhib. Med. Chem. 2018; 33: 1271
  • 6 Mallinger A, Schiemann L, Rink C, Sejberg J, Honey MA, Czodrowski P, Stubbs M, Poeschke O, Busch M, Schneider R, Schwarz D, Musil D, Burke R, Urbahns K, Workman P, Wienke D, Clarke PA, Raynaud FI, Eccles SA, Esdar C, Rohdich F, Blagg J. ACS Med. Chem. Lett. 2016; 7: 573
  • 7 Li F, Hu Y, Wang Y, Ma C, Wang J. J. Med. Chem. 2017; 60: 1580
  • 8 Li J. J.; In Name Reactions; Springer, Berlin, 2009; 298; DOI: 10.1007/978-3-642-01053-8_131
  • 9 Fu Z, Li Z, Song Y, Yang R, Liu Y, Cai H. J. Org. Chem. 2016; 81: 2794
  • 10 Jiang Q, Li H, Zhang X, Xu B, Su W. Org. Lett. 2018; 20: 2424
  • 11 Hammamoto H, Umemoto H, Umemoto M, Ohta C, Fujita E, Nakamura A, Maegawa T, Miki Y. Heterocycles 2015; 91: 561
  • 12 Perry GJ. P, Quibell JM, Panigrahi A, Larrosa I. J. Am. Chem. Soc. 2017; 139: 11527
  • 13 Quibell JM, Perry GJ. P, Cannas DM, Larrosa I. Chem. Sci. 2018; 9: 3860
  • 14 Henderson SH, West RA, Ward SE, Honey MA. R. Soc. Open Sci. 2019; 5: 180333
  • 15 Bromination of Azahetarenecarboxylic Acids; General Procedure The appropriate carboxylic acid (0.280 mmol) was dissolved in the solvent (1.5 mL) and NBS (0.280 mmol) was added. The vessel was sealed and the mixture was stirred at rt for 16 h. H2O (10 mL) was added and the organic material was extracted with EtOAc (2 × 4 mL). The organic layers were combined, dried (MgSO4), filtered, and concentrated under reduced pressure. The crude residue was purified by chromatography (silica gel, EtOAc–PE or CH2Cl2–MeOH).
  • 16 3-Bromo-1H-indazole (Table [1], Entry 1) Colourless solid; yield: 36 mg (67%); mp 145–150 °C (Lit.14 142–143 °C). 1H NMR (400 MHz, CDCl3): δ = 1.57 (br s, 1 H, NH), 7.58 (m, 2 H, ArH), 7.39 (m, 1 H, ArH), 7.17 (m, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 141.3, 128.3, 123.1, 122.6, 121.9, 120.2, 110.7. HRMS (ESI): m/z [M + H]+ calcd for C7H6BrN2: 196.9709; found: 196.9717.
  • 17 Tanner DD, Ruo TC. S, Takiguchi H, Guillaume A, Reed DW, Setiloane BP, Tan SL, Meintzer CP. J. Org. Chem. 1983; 48: 2743
  • 18 CCDC 1913779 contains the supplementary crystallographic data for 3-bromopyrazolo[1,5-b]pyridazine (Figure 1). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Shimizu S, Imamura Y, Ueki T. Org. Process Res. Dev. 2014; 18: 354
  • 20 Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
  • 21 Xue H, Tan H, Wei D, Wei Y, Lin S, Liang F, Zhao B. RSC Adv. 2013; 3: 5382