T. LI, F. CHEN, R. LANG, H. WANG, Y. SU, B. QIAO*, A. WANG, T. ZHANG* (DALIAN INSTITUTE OF CHEMICAL PHYSICS, P. R. OF CHINA)

Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low-Temperature Water-Gas Shift Reaction

Angew. Chem. Int. Ed. 2020, 59, 7430-7434.

Hydroformylation of Styrene Derivatives Catalyzed by Rhodium Single-Atoms Supported on CeO₂

$$RhCl_3 + CeO_2 \xrightarrow{H_2O} 400 \, ^\circ C \qquad Rh_1/CeO_2 \qquad (1)$$

$$Rh_1/CeO_2 \xrightarrow{H_2O} 400 \, ^\circ C \qquad Rh_1/CeO_2 \qquad (1)$$

$$Rh_1/CeO_2 \xrightarrow{H_2O} 400 \, ^\circ C \qquad Rh_1/CeO_2 \qquad (1)$$

$$Rh_1/CeO_2 \xrightarrow{H_2O} 400 \, ^\circ C \qquad Rh_1/CeO_2 \qquad (1)$$

$$Results: \qquad CHO \qquad C$$

Significance: A rhodium single-atom catalyst on CeO₂ (Rh₁/CeO₂) was prepared by mixing RhCl₃ and CeO₂ in deionized water, followed by calcination at 400 °C (eq. 1). Rh₁/CeO₂ catalyzed the hydroformylation of styrene derivatives with hydrogen generated in situ from water and carbon monoxide to give the corresponding linear aldehydes in ≤ 99% conversion (eq. 2).

Comment: Rh₁/CeO₂was characterized by means of ICP-OES, STEM, HAADF-STEM, FT-IR, EDS analyses. In the hydroformylation of styrene, Rh nanoparticles supported on CeO₂ (NP-Rh/CeO₂) gave 3-phenylpropan-1-ol rather than 3-phenylpropanal, with 99% selectivity (eq. 3).

Synfacts 2020, 16(07), 0825 Published online: 17.06.2020

Polymer-Supported Synthesis

Key words

rhodium catalysis hydroformylation single-atom catalyst styrenes

