Synlett 2020; 31(10): 1022-1026
DOI: 10.1055/s-0040-1707466
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Catalyzed [3+2]-Cyclization of Substituted Benzylidenemalononitriles and Ethyl Glycinate Hydrochloride: Direct Access to 5-Amino-1H-pyrrole-2-carboxylates

Zhenjie Su
a   School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
Shan Wang
a   School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
Naili Luo
a   School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
Cunde Wang
a   School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
› Author Affiliations
Financial support of this research by the Priority Academic Program Development of Jiangsu Higher Education Institutions is acknowledged.
Further Information

Publication History

Received: 06 February 2020

Accepted after revision: 10 March 2020

Publication Date:
02 April 2020 (online)


Abstract

An iodine-catalyzed [3+2]-cycloaddition reaction of substituted benzylidenemalononitriles and ethyl glycinate hydrochloride in DMF has been developed for the synthesis of 5-amino-1H-pyrrole-2-carboxylates. This efficient method provides access to a variety of structurally diverse pyrrole-2-carboxylate derivatives. The structure of a typical product was confirmed by X-ray crystallography.

Supporting Information

 
  • References and Notes

    • 1a Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
    • 1b Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264; corrigendum; Chem. Rev. 2010, 110, 3850
    • 1c Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
    • 1d Chu M.-J, Tang X.-L, Qin G.-F, de Voogd NJ, Li P.-L, Li G.-Q. Chin. Chem. Lett. 2017; 28: 1210
    • 1e Nisha Kumar K, Kumar V. RSC Adv. 2015; 5: 10899
    • 2a Dembitsky VM, Gloriozova TA, Poroikov VV. Mini-Rev. Med. Chem. 2005; 5: 319
    • 2b Gupton JT. Top. Heterocycl. Chem. 2006; 2: 53
    • 2c Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 2d Bailly C. Curr. Med. Chem.: Anti-Cancer Agents 2004; 4: 363
    • 2e Forte B, Malgesini B, Piutti C, Scolaro A, Papeo G. Drugs 2009; 7: 705
    • 2f Al-Mourabit A, Zancanella MA, Tilvi S, Romo D. Nat. Prod. Rep. 2011; 28: 1229
    • 3a Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Eur. J. Med. Chem. 2018; 157: 527
    • 3b McGeary RP, Tan DT. C, Selleck C, Monteiro Pedroso M, Sidjabat HE, Schenk G. Eur. J. Med. Chem. 2017; 137: 351
    • 3c Zhu Y.-F, Struthers RS, Connors PJ. Jr, Gao Y, Gross TD, Saunders J, Wilcoxen K, Reinhart GJ, Ling N, Chen C. Bioorg. Med. Chem. Lett. 2002; 12: 399
    • 3d Idhayadhulla A, Kumar RS, Nasser AJ. A. J. Mex. Chem. Soc. 2011; 55: 218
    • 3e Domagala A, Jarosz T, Lapkowski M. Eur. J. Med. Chem. 2015; 100: 176
    • 4a Biava M, Porretta GC, Manetti V. Mini-Rev. Med. Chem. 2007; 7: 65
    • 4b Biava M, Porretta GC, Poce G, Supino S, Sleiter G. Curr. Org. Chem. 2009; 13: 1092
    • 4c Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, de Logu A, Manetti F, Botta M. ChemMedChem 2011; 6: 593
  • 5 Baraldi PG, Nunez M. delC, Tabrizi MA, De Clerq E, Balzanari J, Bermejo J, Estévez F, Romagnoli R. J. Med. Chem. 2004; 47: 2877
  • 6 Kunfermann A, Witschel M, Illarionov B, Martin R, Rottmann M, Höffken W, Seet M, Eisenreich W, Knölker H.-J, Fischer M, Bacher A, Groll M, Diederich F. Angew. Chem. Int. Ed. 2014; 53: 2235
    • 7a Teixeira C, Barbault F, Rebehmed J, Liu K, Xie L, Lu H, Jiang S, Fan B.-T, Maurel F. Bioorg. Med. Chem. 2008; 16: 3039
    • 7b Shankar EM, Vignesh R, Ellegård R, Barathan M, Chong YK, Kahar Bador M, Rukumani DR, Sabet NS, Kamarulzaman A, Velu V, Larsso M. Pathog. Dis. 2014; 70: 110
  • 8 Chin Y.-W, Lim S.-W, Kim S.-H, Shin D.-H, Suh Y.-G, Kim Y.-B, Kim YC, Kim J. Bioorg. Med. Chem. Lett. 2003; 13: 79
  • 9 Roth BD. Prog. Med. Chem. 2002; 40: 1
    • 10a Killoran J, Gallagher JF, Murphy PV, O’Shea DF. New J. Chem. 2005; 29: 1258
    • 10b Maeda H. Eur. J. Org. Chem. 2007; 2007: 5313
    • 10c Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
    • 10d Berlin A, Vercelli B, Zotti G. Polym. Rev. 2008; 48: 493
    • 10e Olivier WJ, Smith J, Bissember AA. C. Org. Biomol. Chem. 2018; 16: 1216
    • 10f Trofimov BA, Mikhaleva AI, Schmidt EY, Sobenina LN. Chemistry of Pyrroles 2014; Chap. 2.2: 298
    • 10g Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
    • 10h Yurovskaya MA, Alekseyev RS. Chem. Heterocycl. Compd. 2014; 49: 1400
    • 10i Sobenina LN, Tomilin DN, Trofimov BA. Russ. Chem. Rev. 2014; 83: 475
    • 10j Guo Y, Zhang A, Li C, Li W, Zhu D. Chin. Chem. Lett. 2018; 29: 371
    • 10k Sun JJ, Han Y, Sun J, Yan C.-G. Chin. Chem. Lett. 2015; 26: 685
    • 11a Donohe TJ, Thomas RE. Chem. Rec. 2007; 7: 180
    • 11b Shinohara KI, Bando T, Sugiyama H. Anti-Cancer Drugs 2010; 21: 228
    • 11c Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev. 2010; 110: 6595
    • 11d Clive DL. J, Cheng P. Tetrahedron 2013; 69: 5067
    • 11e Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 11f Gao H, Sun J, Yan C.-G. Chin. Chem. Lett. 2015; 26: 353
    • 12a Frode R, Hinze C, Josten I, Schmidt B, Steffan B, Steglich W. Tetrahedron Lett. 1994; 35: 1689
    • 12b Hashimoto T, Yasuda A, Akazawa K, Takaoka S, Tori M, Asakawa Y. Tetrahedron Lett. 1994; 35: 2559
    • 12c Zhang W, Liu Z, Li S, Yang T, Zhang Q, Ma L, Tian X, Zhang H, Huang C, Zhang S, Ju J. Org. Lett. 2012; 14: 3364
    • 12d Hughes CC, Prieto-Davo A, Jensen PR, Fenical W. Org. Lett. 2008; 10: 629
    • 12e Li R. Med. Res. Rev. 2016; 36: 169
    • 12f Banwell MG, Hamel E, Hockless DC. R, Verdier-Pinard P, Willis AC, Wong DJ. Bioorg. Med. Chem. 2006; 14: 4627
    • 12g Galenko EE, Galenko AV, Novikov MS, Khlebnikov AF, Kudryavtsev IV, Terpilowski MA, Serebriakova MK, Trulioff AS, Goncharov NV. ChemistrySelect 2017; 2: 7508
    • 12h Birouk M, Harraga S, Panouse-Perrini J, Robert JF, Damelincourt M, Thobald F, Mercier R, Panouse JJ. Eur. J. Med. Chem. 1991; 26: 91
    • 12i Teng X, Keys H, Yuan J, Degterev A, Cuny GC. Bioorg. Med. Chem. Lett. 2008; 18: 3219
    • 12j Micheli F, Di Fabio R, Giacometti A, Roth A, Moro E, Merlo G, Paio A, Merlo-Pich E, Tomelleri S, Tonelli F, Zarantonello P, Zonzini L, Capelli AM. Bioorg. Med. Chem. Lett. 2010; 20: 7308
    • 12k Urbano M, Guerrero M, Zhao J, Velaparthi S, Schaeffer M.-T, Brown S, Rosen H, Roberts E. Bioorg. Med. Chem. Lett. 2011; 21: 5470
    • 13a Gupton JT, Krumpe KE, Burnham BS, Dwornik KA, Petrich SA, Du KX, Bruce MA, Vu P, Vargas M, Keertikar KM, Hosein KN, Jones CR, Sikorski JA. Tetrahedron 1998; 54: 5075
    • 13b Komatsubara M, Umeki T, Fukuda T, Iwao M. J. Org. Chem. 2014; 79: 529
    • 13c Cheng G, Wang X, Bao H, Chen C, Liu N, Hu Y. Org. Lett. 2012; 14: 1062; corrigendum: Org. Lett. 2012, 14, 1949
    • 14a Cohen MS, Hadjivassiliou H, Taunton J. Nat. Chem. Biol. 2007; 3: 156
    • 14b Hynes JJr, Dyckman AJ, Lin S, Wrobleski ST, Wu H, Gillooly KM, Kanner SB, Lonial H, Loo D, McIntyre KW, Pitt S, Shen DR, Shuster DJ, Yang X.-X, Zhang R, Behnia K, Zhang H, Marathe PH, Doweyko AM, Tokarski JS, Sack JS, Pokross M, Kiefer SE, Newitt JA, Barrish JC, Dodd J, Schieven GL, Leftheris K. J. Med. Chem. 2008; 51: 4
    • 14c Shi Z, Kiau S, Lobben P, Hynes JJr, Wu H, Parlanti L, Discordia R, Doubleday WW, Leftheris K, Dyckman AJ, Wrobleski ST, Dambalas K, Tummala S, Leung S, Lo E. Org. Process Res. Dev. 2012; 16: 1618
    • 15a Giacometti RD, Ramtohul YK. Synlett 2009; 2009: 2010
    • 15b Sakata K, Aoki K, Sakurai C.-F, Sakurai A, Tamura S, Murakoshi S. Agric. Biol. Chem. 1978; 42: 457
    • 16a Fu X, Chen J, Li G, Liu Y. Angew. Chem. Int. Ed. 2009; 48: 5500
    • 16b Morin MS. T, St-Cyr DJ, Arndtsen BA. Org. Lett. 2010; 12: 4916
    • 16c Donohoe TJ, Race NJ, Bower JF, Callens CK. A. Org. Lett. 2010; 12: 4094
    • 16d Wang L, Ackermann L. Org. Lett. 2013; 15: 176
    • 16e Zhao M.-N, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Org. Lett. 2014; 16: 608
    • 16f Xu Y.-H, He T, Zhang Q.-C, Loh T.-P. Chem. Commun. 2014; 50: 2784
    • 16g Murugan K, Liu S.-T. Tetrahedron Lett. 2013; 54: 2608
    • 16h Odom AL, McDaniel TJ. Acc. Chem. Res. 2015; 48: 2822
    • 16i Vessally E. RSC Adv. 2016; 6: 18619
    • 16j Khajuria R, Dham S, Kapoor KK. RSC Adv. 2016; 6: 37039
    • 16k Sharma A, Piplani PJ. Heterocycl. Chem. 2017; 54: 27
    • 16l Leonardi M, Estévez V, Villacampa M, Menéndez JC. Synthesis 2019; 51: 816
    • 16m Duarah G, Kaishap PP, Begum T, Gogoi S. Adv. Synth. Catal. 2019; 361: 654
    • 16n Keiko NA, Vchislo NV. Chem. Heterocycl. Compd. 2017; 53: 498
    • 16o Ma Z, Ma Z, Zhang D. Molecules 2018; 23: 2666
    • 16p Li L, Chen Q, Xiong X, Zhang C, Qian J, Shi J, An SQ, Zhang M. Chin. Chem. Lett. 2018; 29: 1893
    • 17a Hombrecher HK, Horter G. Synthesis 1990; 22: 389
    • 17b Walizei GH, Breitmaier E. Synthesis 1989; 21: 337
    • 17c Paine JB. III, Dolphin D. J. Org. Chem. 1985; 50: 5598
    • 17d Funt LD, Tomashenko OA, Novikov MS, Khlebnikov AF. Synthesis 2018; 50: 4809
    • 17e Khusnutdinov RI, Baiguzina AR, Mukminov RR. Akhmetov I. V, Gubaidullin IM, Spivak SI, Dzhemilev UM. Russ. J. Org. Chem. 2010; 46: 1053
    • 17f Palmieri A, Gabrielli S, Parlapiano M, Ballini R. RSC Adv. 2015; 5: 4210
    • 17g Liu Y, Hu H, Wang X, Zhi S, Kan Y, Wang C. J. Org. Chem. 2017; 82: 4194
    • 17h Khajuria R, Saini Y, Kapoor KK. Tetrahedron Lett. 2013; 54: 5699
    • 17i Yasui E, Tsuda J, Ohnuki S, Nagumo S. Chem. Pharm. Bull. 2016; 64: 1262
    • 17j Nishiwaki N, Ogihara T, Takami T, Tamura M, Ariga M. J. Org. Chem. 2004; 69: 8382
    • 17k Galenko EE, Tomashenko OA, Khlebnikov AF, Novikov MS. Org. Biomol. Chem. 2015; 13: 9825
    • 17l Gewald K, Hain U. Synthesis 1984; 62
    • 17m Abdelhamid AO, Abed NM. Heterocycles 1986; 24: 101
    • 18a Larionov OV, de Meijere A. Angew. Chem. Int. Ed. 2005; 44: 5664
    • 18b Liu J, Fang Z, Zhang Q, Liu Q, Bi X. Angew. Chem. Int. Ed. 2013; 52: 6953
  • 19 Barton DH. R, Kervagoret J, Zard SZ. Tetrahedron 1990; 46: 7587
    • 20a Gorin DJ, Davis NR, Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
    • 20b Crawley ML, Goljer I, Jenkins DJ, Mehlmann JF, Nogle L, Dooley R, Mahaney PE. Org. Lett. 2006; 8: 5837
    • 20c Dong H, Shen M, Redford JE, Stokes BJ, Pumphrey AL, Driver TG. Org. Lett. 2007; 9: 5191
    • 20d Davies PW, Martin N. Org. Lett. 2009; 11: 2293
    • 20e Yoshida M, Maeyama Y, Al-Amin M, Shishido K. J. Org. Chem. 2011; 76: 5813
    • 20f Du X, Xie X, Liu Y. J. Org. Chem. 2010; 75: 510
    • 20g Yamamoto H, Sasaki I, Mitsutake M, Karasudani A, Imagawa H, Nishizawa M. Synlett 2011; 2815
  • 21 Zhang L, Liu K, Shao X, Xu X. Chin. Chem. Lett. 2019; 30: 340
  • 22 Imbri D, Netz N, Kucukdisli M, Kammer LM, Jung P, Kretzschmann A, Opatz T. J. Org. Chem. 2014; 79: 11750
  • 23 Mataka S, Takahashi K, Tsuda Y, Tashiro M. Synthesis 1982; 14: 157
  • 24 Wright MT, Carroll DG, Smith TM, Smith SQ. Tetrahedron Lett. 2010; 51: 4150
  • 25 Yang T, Wang K.-H, Huang D, Li P, Deng Z, Su Y. Tetrahedron 2019; 75: 2291
    • 26a Wang Z, Shi Y, Luo X, Han DM, Deng W.-P. New J. Chem. 2013; 37: 1742
    • 26b Lopez-Perez A, Robles-Machin R, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2007; 46: 9261
    • 26c Robles-Machin R, López-Pérez A, González-Esguevillas M, Adrio J, Carretero JC. Chem. Eur. J. 2010; 16: 9864
    • 26d Kudryavtsev KV, Ivantcova PM, Churakov AV, Vasin VA. Tetrahedron Lett. 2012; 53: 4300
    • 26e Xin Y, Zhao J, Han J, Zhu S. J. Fluorine Chem. 2010; 131: 642
  • 27 Pasko CM, Dissanayake AA, Billow BS, Odom AL. Tetrahedron 2016; 72: 1168
  • 28 Ethyl 5-Amino-3-aryl-4-cyano-1H-pyrrole-2-carboxylates 3a–t; General Procedure A mixture of the appropriate benzylidenemalononitrile 1 (1.0 mmol) and I2 (51 mg, 0.2 mmol) in DMF (25 mL) was heated to 120 °C, and ethyl glycinate hydrochloride (2a; 349 mg, 2.5 mmol) was added. The resulting mixture was stirred at 120 °C for 18–28 h until full conversion of the benzylidenemalononitrile was achieved (TLC; hexanes–EtOAc, 1:1). The mixture was then diluted with H2O (60 mL) and extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with H2O (25 mL) and brine (25 mL), dried (Na2SO4), filtered, and concentrated under reduced pressure to give a crude product that was purified by column chromatography [silica gel, EtOAc–hexanes (1:1.5)]. Ethyl 5-Amino-4-cyano-3-phenyl-1H-pyrrole-2-carboxylate (3a) Yellow solid; yield: 184 mg (72%); mp 223.2–223.5 °C (PE–EtOAc). IR (KBr): 3690, 3456, 3280, 2977, 2209, 1653, 1596, 1511, 1419, 1362, 1307, 1189, 1155, 1025, 760, 700 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.87 (s, 1 H), 7.45–7.30 (m, 5 H), 6.14 (s, 2 H), 4.06 (q, J = 7.0 Hz, 2 H), 1.11 (t, J = 7.0 Hz, 3 H). 13C{1H} NMR (100 MHz, DMSO-d 6): δ = 159.8, 149.8, 133.3, 132.7, 130.2, 129.9, 128.0, 116.8, 110.3, 75.8, 59.8, 14.5. HRMS (ESI): m/z [M + Na]+ calcd for C14H13N3NaO2: 278.0905; found: 278.0899.
  • 29 CCDC 1944944 contains the supplementary crystallographic data for compound 3s. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.