Synthesis 2021; 53(01): 182-192
DOI: 10.1055/s-0040-1707351
paper
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Synthesis of Alkylated 1,4-Cyclohexadiene Esters Using Epimeric Pyrroloimidazolones

Ngan Tran
,
Dusty Cadwallader
,
Costa Metallinos
Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada   Email: cmetallinos@brocku.ca
› Author Affiliations
This work was supported by NSERC Canada under the Discovery Grant program.
Further Information

Publication History

Received: 14 June 2020

Accepted after revision: 13 July 2020

Publication Date:
24 August 2020 (online)


Abstract

A pair of ortho-benzoate esters containing epimeric pyrroloimidazolones undergo sequential Birch reduction and diastereoselective alkylation to provide products ranging from 88:12 to >95:5 diastereomeric ratio (dr) for the syn-epimer, and 50:50 to 95:5 dr for the anti-epimer. The stereochemistry of the products is confirmed by a combination of X-ray crystallography on a key anti-epimer-derived product, in combination with specific rotation measurements of enantiomers that are prepared from the syn or anti starting materials. A diastereomerically pure allyl-substituted substrate is shown to undergo Cope rearrangement, which transposes the quaternary chiral center to a remote position without racemization. This work is complementary to asymmetric reductive alkylation reported previously by Schultz using anisole substrates with chiral benzamide auxiliaries in that the pyrroloimidazolones act as surrogates for the methoxy group.

Supporting Information

 
  • References

    • 1a Rabideau PW, Marcinow Z. Org. React. 1992; 42: 1
    • 1b Birch AJ. J. Chem. Soc. 1944; 430
    • 1c Birch AJ. Pure Appl. Chem. 1996; 68: 553
    • 1d Hook JM, Mander LN. Nat. Prod. Rep. 1986; 3: 35

      For Birch reduction in three recent syntheses of herquline B and C, see:
    • 2a He C, Stratton TP, Baran PS. J. Am. Chem. Soc. 2019; 141: 29
    • 2b Cox JB, Kimishima A, Wood JL. J. Am. Chem. Soc. 2019; 141: 25
    • 2c Zhu X, McAtee CC, Schindler CS. J. Am. Chem. Soc. 2019; 141: 3409
    • 3a Birch AJ. J. Chem. Soc. 1950; 1551
    • 3b Nelson NA, Fassnacht JH, Piper JU. J. Am. Chem. Soc. 1961; 83: 206
    • 3c Bachi MD, Epstein JW, Herzberg-Minzly Y, Loewenthal HJ. E. J. Org. Chem. 1969; 34: 126
    • 4a Hook JM, Mander LN, Woolias M. Tetrahedron Lett. 1982; 23: 1095
    • 4b Schultz AG, Dittami PJ, Lavieri FP, Salowey C, Sundararaman P, Szymula MB. J. Org. Chem. 1983; 49: 4429
  • 5 Schultz AG, Macielag M. J. Org. Chem. 1986; 51: 4983
  • 6 Job A, Janeck CF, Bettray W, Peters R, Enders D. Tetrahedron 2002; 58: 2253
    • 7a Schultz AG, Sundararaman P. Tetrahedron Lett. 1984; 25: 4591
    • 7b Schultz AG, Sundararaman P, Macielag M, Lavieri FP, Welch M. Tetrahedron Lett. 1985; 26: 4575
  • 8 Schultz AG, Macielag M, Sundararaman P, Taveras AG, Welch M. J. Am. Chem. Soc. 1988; 110: 7828
  • 9 Schultz AG, Puig S. J. Org. Chem. 1985; 50: 915
  • 10 Schultz AG, Holoboski MA, Smyth MS. J. Am. Chem. Soc. 1996; 118: 6210
  • 11 Schultz AG, Pettus L. J. Org. Chem. 1997; 62: 6855
  • 12 Schultz AG, Wang A. J. Am. Chem. Soc. 1998; 120: 8259
    • 13a Schultz AG. Acc. Chem. Res. 1990; 23: 207
    • 13b Schultz AG. Chem. Commun. 1999; 1263
    • 14a Metallinos C, John J, Zaifman J, Emberson K. Adv. Synth. Catal. 2012; 354: 602
    • 14b Metallinos C, John J, Nelson J, Dudding T, Belding L. Adv. Synth. Catal. 2013; 355: 1211
  • 15 Wilson-Konderka C, Doxtator K, Metallinos C. Adv. Synth. Catal. 2016; 358: 2599
    • 16a Emberson K, Tran N, Metallinos C. Synlett 2017; 28: 2901
    • 16b Sechi M. L., Andrade M., Foy H., Pilkington M., Dudding T., Metallinos C.; Adv. Synth. Catal.; 2020, 362: in press; DOI: org/10.1002/adsc.202000574
  • 17 Spletstoser J, White J, Tunoori A, Georg G. J. Am. Chem. Soc. 2007; 129: 3408
  • 18 Although the 1H NMR spectra of syn- and anti-13 imply that the products are produced in >95:5 dr, stereochemistry α to the ester was not assigned because of the expected tenuous configurational stability at this position. The stereochemistry of syn- and anti-13 are not relevant in either case considering that the subsequent alkylation step results in products with configurational stability.
  • 19 Use of LHMDS, NaHMDS, or KHMDS in place of LDA did not result in improvement of diastereomeric ratio.
  • 20 Malachowski WP, Banerji M. Tetrahedron Lett. 2004; 45: 8183
  • 21 CCDC 2002535 (19) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 22 Butora G, Reed JW, Hudlicky T, Brammer LE. Jr, Higgs PI, Simmons DP, Heard NE. J. Am. Chem. Soc. 1997; 119: 7694
  • 23 John J, Wilson-Konderka C, Metallinos C. Adv. Synth. Catal. 2015; 357: 2071
  • 24 Burchat AF, Chong JM, Nielsen N. J. Organomet. Chem. 1997; 542: 281
  • 25 Buchwald SL, LaMaire SJ, Nielsen RB, Watson BT, King SM. Org. Synth. 1993; 71: 77
  • 26 For the preparation of 10, 11, and syn/anti-12, see also: Wilson-Konderka C. M.Sc. Thesis . Brock University; Canada: 2016