Synlett 2021; 32(02): 224-228
DOI: 10.1055/s-0040-1707319
letter

Potassium tert-Butoxide Mediated Reductive C–P Cross-Coupling of Arylvinyl Sulfides through C–S Bond Cleavage

Jie Feng
a   State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. of China   Email: qinglezeng@hotmail.com
,
Qiaoling Zhang
a   State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. of China   Email: qinglezeng@hotmail.com
,
Fuhai Li
a   State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. of China   Email: qinglezeng@hotmail.com
,
Lu Yang
b   Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba Aramaki, Aoba-ku, Sendai, 980-8578, Japan
,
Ratnakar Reddy Kuchukulla
a   State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. of China   Email: qinglezeng@hotmail.com
,
Qingle Zeng
a   State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. of China   Email: qinglezeng@hotmail.com
› Author Affiliations
This work was supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2018Z002).


Abstract

A transition-metal-free t-BuOK-mediated reductive C–P cross-coupling reaction of arylvinyl sulfides with diarylphosphine oxides through C–S bond cleavage has been developed. This protocol not only permits the synthesis of diaryl(2-arylethyl)phosphine oxides, but also achieves an unprecedented construction of a C–P bond through C–S bond cleavage and reduction of a C–C double bond in one pot.

Supporting Information



Publication History

Received: 18 August 2020

Accepted after revision: 08 September 2020

Article published online:
13 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Hirao T, Masunaga T, Ohshiro Y, Agawa T. Synthesis 1981; 56
    • 2b Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
    • 3a Xuan J, Zeng T.-T, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2015; 21: 4962
    • 3b Liu L, Wang Y, Zeng Z, Xu P, Gao Y, Yin Y, Zhao Y. Adv. Synth. Catal. 2013; 355: 659
    • 4a Xie P, Wang J, Fan J, Liu Y, Wu X, Loh T.-P. Green Chem. 2017; 19: 2135
    • 4b Long C, Zhu Y, Chen T, Liu L, Zhang J.-S, Han L.-B. Org. Biomol. Chem. 2018; 16: 5090
  • 5 Berrino R, Cacchi S, Fabrizi G, Goggiamani A, Stabile P. Org. Biomol. Chem. 2010; 8: 4518
  • 6 Hosseini-Sarvari M, Jafari F, Mohajeri A, Hassani N. Catal. Sci. Technol. 2018; 8: 4044
  • 7 Andaloussi M, Lindh J, Sävmarker J, Sjöberg JR, Larhed M. Chem. Eur. J. 2009; 15: 13069
  • 8 Luo H, Liu H, Chen X, Wang K, Luo X, Wang K. Chem. Commun. 2017; 53: 956
    • 9a Yang J, Xiao J, Chen T, Yin S.-F, Han L.-B. Chem. Commun. 2016; 52: 12233
    • 9b Li J, Bi X, Wang H, Xiao J. RSC Adv. 2014; 4: 19214
    • 10a Zhang J.-S, Chen T, Yang J, Han L.-B. Chem. Commun. 2015; 51: 7540
    • 10b Basiouny MM. I, Schmidt JA. R. Organometallics 2017; 36: 721
    • 11a Wu Y, Liu L, Yan K, Xu P, Gao Y, Zhao Y. J. Org. Chem. 2014; 79: 8118
    • 11b Qian H.-F, Li C.-K, Zhou Z.-H, Tao Z.-K, Shoberu A, Zou J.-P. Org. Lett. 2018; 20: 5947
  • 12 Liu C, Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
  • 13 Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
    • 14a Meconi GM, Vummaleti SV. C, Luque-Urrutia J, Belanzoni P, Nolan SP, Jacobsen H, Cavallo L, Solà M, Poater A. Organometallics 2017; 36: 2088
    • 14b Doherty S, Knight JG, Ward NA. B, Bittner DM, Wills C, McFarlane W, Clegg W, Harrington RW. Organometallics 2013; 32: 1773
    • 15a Modha SG, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 15b Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
    • 16a Martinez RA, Glass DR, Ortiz EG, Alvarez MA, Juarez E, Lodwig SN, Unkefer CJ. J. Labelled Compd. Radiopharm. 2014; 57: 338
    • 16b Degennaro L, Tota A, De Angelis S, Andresini M, Cardellicchio C, Capozzi MA, Luisi R. Eur. J. Org. Chem. 2017; 6486
  • 17 Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13
  • 18 Furuya M, Tsutsuminai S, Nagasawa H, Komine N, Hirano M, Komiya S. Chem. Commun. 2003; 2046
    • 19a Uetake Y, Niwa T, Hosoya T. Org. Lett. 2016; 18: 2758
    • 19b Shibata T, Mitake A, Akiyama Y, Kanyiva KS. Chem. Commun. 2017; 53: 9016
  • 20 Denmark SE, Cresswell AJ. J. Org. Chem. 2013; 78: 12593
  • 21 Holmquist H, Carnahan J. J. Org. Chem. 1960; 25: 2240
    • 22a Yu T.-Y, Zheng Z.-J, Bai J.-H, Fang H, Wei H. Adv. Synth. Catal. 2019; 361: 2020
    • 22b Liu C, Szostak M. Chem. Commun. 2018; 54: 2130
    • 23a Liebeskind LS, Srogl J. Org. Lett. 2002; 4: 979
    • 23b Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A. Chem. Eur. J. 2014; 20: 13146
  • 24 Wei K.-J, Quan Z.-j, Zhang Z, Da Y.-x, Wang X.-c. Org. Biomol. Chem. 2016; 14: 2395
  • 25 Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
  • 26 Lin Y.-m, Lu G.-p, Wang R.-k, Yi W.-b. Org. Lett. 2017; 19: 1100
    • 27a Liu G.-Z, Xu H.-W, Wang P, Lin Z.-T, Duan Y.-C, Zheng J.-X, Liu H.-M. Eur. J. Med. Chem. 2013; 65: 323
    • 27b van der Donk WA, Gerfen GJ, Stubbe J. J. Am. Chem. Soc. 1998; 120: 4252
    • 28a Jiang W, Li N, Zhou L, Zeng Q. ACS Catal. 2018; 8: 9899
    • 28b Jiang W, Huang Y, Zhou L, Zeng Q. Sci. China: Chem. 2019; 62: 1213
    • 28c Zhang L, Tan M, Zhou L, Zeng Q. Tetrahedron Lett. 2018; 59: 2778
    • 28d Chen H, Jiang W, Zeng Q. Chem. Rec. in press; DOI: 10.1002/tcr.202000084
    • 29a Zeng Q, Zhang L, Zhou Y. Chem. Rec. 2018; 18: 1278
    • 29b Yang L, Feng J, Qiao M, Zeng Q. Org. Chem. Front. 2018; 5: 24
  • 30 Trisubstituted Phosphine Oxides 3a–i; General Procedure An oven-dried standard 25 mL ground-mouth test tube equipped with a stirrer bar was charged with the appropriate disubstituted phosphine oxide 2 (2.0 mmol, 2.0 equiv), alkenyl sulfide 1 (1.0 mmol, 1.0 equiv), t-BuOK (2.5 mmol, 2.5 equiv), and toluene (12 mL). The test tube was sealed with a sleeve rubber stopper and then evacuated and refilled with argon for three cycles. The mixture was stirred at 120 °C for 24 h, then cooled to r.t. The mixture was diluted with EtOAc and washed with H2O, and the aqueous layer was extracted with EtOAc (×3). The combined organic layer was dried (MgSO4) and concentrated under vacuum on a rotary evaporator, and the residue was purified by column chromatography (silica gel, PE–EtOAc gradient).
  • 31 [2-(3-Fluorophenyl)ethyl](diphenyl)phosphine Oxide (3e) White crystals; yield: 276 mg (85%); mp 101–102 °C. 1H NMR (400 MHz, CDCl3): δ = 7.81–7.67 (m, 4 H), 7.54–7.39 (m, 6 H), 7.22–7.11 (m, 1 H), 6.98–6.87 (m, 1 H), 6.87–6.78 (m, 2 H), 2.97–2.81 (m, 2 H), 2.60–2.47 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 162.84 (d, J C–F = 246.0 Hz), 143.57 (dd, J C–P = 15.2 Hz, J C–F =7.2 Hz), 132.50 (d, J C–P = 98.7 Hz), 131.88 (d, J C–P = 2.7 Hz), 130.70 (d, J C–P = 9.3 Hz), 130.03 (d, J C–F = 8.3 Hz), 128.73 (d, J C–P = 11.6 Hz), 123.73 (d, J C–F = 2.8 Hz), 114.92 (d, J C–F = 21.2 Hz), 113.19 (d, J C–F = 21.0 Hz), 31.53 (d, J C–P = 70.0 Hz), 27.30 (dd, J C–P = 2.9, 1.8 Hz). 19F NMR (376 MHz, CDCl3): δ = –113.15. 31P NMR (162 MHz, CDCl3): δ = 31.22. HRMS (ESI-MS): m/z [M + Na]+ calcd for C20H18FNaOP: 347.0972; found: 347.0951.
  • 32 [(6,6′-Difluorobiphenyl-2,2′-diyl)bis(ethane-2,1-diyl)]bis(diphenylphosphine) Dioxide (4) An oven-dried standard 25 mL ground-mouth test tube equipped with a stirrer bar was charged with phosphine oxide 3e (0.324 g, 1.0 mmol), (diacetoxyiodo)benzene (0.805 g, 2.5 mmol), I2 (0.051 g, 0.2 mmol), p-toluenesulfonamide (0.034 g, 0.2 mmol), and DCE (5 mL). The test tube was sealed with a sleeve rubber stopper and then evacuated and refilled with argon for three cycles. The mixture was stirred at 60 °C for 10 h, then cooled to r.t. The reaction was quenched with aq Na2S2O3, and the mixture was extracted with EtOAc and washed with H2O. The aqueous layer was extracted with EtOAc (×3), and the combined organic layer was dried (MgSO4) and concentrated in vacuum on a rotary evaporator. The residue was purified by column chromatography (silica gel, PE–EtOAc gradient) to give a white solid; 349 mg (54%); mp 101–102 °C. 1H NMR (400 MHz, CDCl3): δ = 7.86–7.73 (m, 8 H), 7.67 (dd, J = 8.7, 5.7 Hz, 2 H), 7.58–7.41 (m, 12 H), 6.96 (dd, J = 9.4, 3.0 Hz, 2 H), 6.62 (td, J = 8.3, 3.0 Hz, 2 H), 3.06–2.92 (m, 4 H), 2.54 (ddd, J = 10.8, 8.9, 4.7 Hz, 4 H). 13C NMR (101 MHz, CDCl3): δ = 163.05 (d, J C–F = 248.2 Hz), 145.84 (dd, J C–P = 14.9 Hz, J C–F =7.2 Hz), 140.55 (d, J C–F = 7.8 Hz), 132.74 (s), 131.95 (d, J C–F = 2.8 Hz), 131.75 (s), 130.84 (d, J C–P = 9.5 Hz), 128.70 (d, J C–P = 11.7 Hz), 116.83 (d, J C–F = 22.2 Hz), 115.68 (d, J C–F = 21.7 Hz), 32.97 (s), 30.10 (d, J C–P = 69.4 Hz). 19F NMR (376 MHz, CDCl3): δ = –113.56 to –113.67 (m). 31P NMR (162 MHz, CDCl3): δ = 31.46 (s). HRMS (ESI-MS): m/z [M + Na + I2]+ calcd for C40H34F2I2NaO2P2: 922.9984; found: 922.9956.