Synlett 2020; 31(18): 1789-1794
DOI: 10.1055/s-0040-1707264
letter

Epoxidation of Alkenes with Molecular Oxygen as the Oxidant in the Presence of Nano-Al2O3

Xuan Zhou
,
Qiong Wang
,
Wenfang Xiong
,
Lu Wang
,
Rongkai Ye
,
Ge Xiang
,
Chaorong Qi
,
Jianqiang Hu
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 51064, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21673081 and 21971073) and the Natural Science Foundation of Guangdong Province (2018B0303110002 and 2019A1515011468).


Abstract

The nano-Al2O3-promoted epoxidation of alkenes with molecular oxygen as the oxidant has been developed, providing an efficient route to a variety of epoxides in moderate to excellent yields. The environmentally friendly and efficient nano-Al2O3 catalyst could be easily recovered and reused five times without significant loss of activity.

Supporting Information



Publication History

Received: 24 June 2020

Accepted after revision: 03 August 2020

Article published online:
01 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Mulzer M, Coates GW. J. Org. Chem. 2014; 79: 11851
    • 1b Bedore MW, Zaborenko N, Jensen KF, Jamison TF. Org. Process Res. Dev. 2010; 14: 432
    • 1c Shaikh RR, Pornpraprom S, D’Elia V. ACS Catal. 2018; 8: 419
    • 1d He J, Ling J, Chiu P. Chem. Rev. 2014; 114: 8037
    • 2a Liu Y, Deng K, Wang S, Xiao M, Han D, Meng Y. Polym. Chem. 2015; 6: 2076
    • 2b Longo JM, Sanford MJ, Coates GW. Chem. Rev. 2016; 116: 15167
    • 2c Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170
    • 3a Mukerjee S, Stassinopoulos A, Caradonna JP. J. Am. Chem. Soc. 1997; 119: 8097
    • 3b Murakami Y, Konishi K. J. Am. Chem. Soc. 2007; 129: 14401
    • 3c Wang B, Lee YM, Seo MS, Nam W. Angew. Chem. Int. Ed. 2015; 54: 11740
  • 4 Bahramian B, Mirkhani V, Moghadam M, Tangestaninejad S. Catal. Commun. 2006; 7: 289
  • 5 Jensen AJ, Luthman K. Tetrahedron Lett. 1998; 39: 3213
    • 6a Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. Angew. Chem. Int. Ed. 2007; 46: 7039
    • 6b Banerjee D, Jagadeesh RV, Junge K, Pohl M.-M, Radnik J, Brückner A, Beller M. Angew. Chem. Int. Ed. 2014; 53: 4359
    • 7a Lane BS, Burgess K. Chem. Rev. 2003; 103: 2457
    • 7b Cussó O, Ribas X, Lloret-Fillol J, Costas M. Angew. Chem. Int. Ed. 2015; 54: 2729
    • 7c Dias LD, Carrilho RM. B, Henriques CA, Calvete MJ. F, Masdeu-Bultj AM, Claver C, Rossi LM, Pereira MM. ChemCatChem 2018; 10: 2792
    • 7d Kamata K, Yonehara K, Sumida Y, Hirata K, Nojima S, Mizuno N. Angew. Chem. Int. Ed. 2011; 50: 12062
    • 8a Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 8b Weinstock IA, Schreiber RE, Neumann R. Chem. Rev. 2018; 118: 2680
    • 9a Mukaiyama T, Yamada T. Bull. Chem. Soc. Jpn. 1995; 68: 17
    • 9b Wentzel BB, Alsters PL, Feiters MC, Nolte RJ. M. J. Org. Chem. 2004; 69: 3453
    • 10a Yang G, Du H, Liu J, Zhou Z, Hu X, Zhang Z. Green Chem. 2017; 19: 675
    • 10b Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J. 2015; 21: 1589
    • 10c Li Z, Wu S, Ding H, Zheng D, Hu J, Wang X, Huo Q, Guan J, Kan Q. New J. Chem. 2013; 37: 1561
    • 11a Maksimchuk NV, Melgunov MS, Chesalov YA, Białoń JM, Jarzębski AB, Kholdeeva OA. J. Catal. 2007; 246: 241
    • 11b Reddy MM, Punniyamurthy T, lqbal J. Tetrahedron Lett. 1995; 36: 159
    • 11c Nam W, Kim HJ, Kim SH, Ho RY. N, Valentine JS. Inorg. Chem. 1996; 35: 1045
  • 12 He X, Chen L, Zhou X, Ji H. Catal. Commun. 2016; 83: 78
  • 13 Mekrattanachai P, Liu J, Li Z, Cao C, Song W. Chem. Commun. 2018; 54: 1433
    • 14a Hadian-Dehkordi LH, Hosseini-Monfared H, Aleshkevych P. Inorg. Chim. Acta 2017; 462: 142
    • 14b Brown JW, Nguyen QT, Otto T, Jarenwattananon NN, Glöggler S, Bouchard L.-S. Catal. Commun. 2015; 59: 50
    • 15a Zhang X, Wang G, Yang M, Luan Y, Dong W, Dang R, Gao H, Yu J. Catal. Sci. Technol. 2014; 4: 3082
    • 15b Weerakkody C, Biswas S, Song W, He J, Wasalathanthri N, Dissanayake S, Kriz DA, Dutta B, Suib SL. Appl. Catal., B 2018; 221: 681
    • 15c Hadian-Dehkordi LH, Hosseini-Monfared H. Green Chem. 2016; 18: 497
    • 15d Phon-in P, Seubsai A, Chukeaw T, Charoen K, Donphai W, Prapainainar P, Chareonpanich M, Noon D, Zohour B, Senkan S. Catal. Commun. 2016; 86: 143
    • 15e Kamata K, Yonehara K, Sumida Y, Hirata K, Nojima S, Mizuno N. Angew. Chem. Int. Ed. 2011; 50: 12062
    • 16a Feng X, Ruan F, Hong R, Ye J, Hu J, Hu G, Yang Z. Langmuir 2011; 27: 2204
    • 16b Ye R, Zhang Y, Chen Y, Tang L, Wang Q, Wang Q, Li B, Zhou X, Liu J, Hu J. Langmuir 2018; 34: 5719
  • 17 Typical Procedure for the Synthesis of Epoxide 2a To a 25 mL dried Schlenk tube was added the mixture of nano-Al2O3 (10.2 mg), alkene 1a (1.0 mmol), 3,5,5-trimethylhexanal (3.0 mmol) in dry MeCN (5 mL) successively. The resulting mixture was stirred at 60 °C for 24 h under 1 atm of O2. After the reaction was completed, the reaction mixture was cooled to room temperature, diluted with EtOAc (25 mL), and filtered. After removing the solvent under vacuum, the crude product was separated by column chromatography on silica gel using PE–EtOAc as eluent to give the product 2a as a pale-yellow oil; yield 84%. IR (KBr): 3060, 2933, 1450, 966, 859, 749, 543 cm–1. MS (EI): m/z = 174 [M+]. 1H NMR (500 MHz, CDCl3): δ = 7.27–7.11 (m, 5 H), 2.95 (d, J = 3.5 Hz, 1 H), 2.19–2.13 (m, 1 H), 2.02–1.97 (m, 1 H), 1.92–1.81 (m, 2 H), 1.53–1.41 (m, 2 H), 1.38–1.31 (m, 1 H), 1.24–1.15 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 142.6, 128.3, 127.2, 125.3, 61.9, 60.2, 28.9, 24.8, 20.2, 19.8.
  • 18 CCDC 2019579 contains the supplementary crystallographic data for compound 2r. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Tsuchiya F, Ikawa T. Can. J. Chem. 1969; 47: 3191