Synthesis 2020; 52(23): 3549-3563
DOI: 10.1055/s-0040-1707239
short review
© Georg Thieme Verlag Stuttgart · New York

Progress on Iridium-Catalyzed Hydrosilylation of Alkenes and Alkynes

Weiwei Gao
a   State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. of China   Email: stding@mail.buct.edu.cn
,
Shengtao Ding
a   State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. of China   Email: stding@mail.buct.edu.cn
b   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21702015, 21871023), the Big Science Project, Beijing University of Chemical Technology (XK180301), the Fundamental Research Funds for the Central Universities (buctrc201719), and the State Key Laboratory of Natural and Biomimetic Drugs (Peking University).
Further Information

Publication History

Received: 29 May 2020

Accepted after revision: 07 July 2020

Publication Date:
18 August 2020 (online)


Abstract

Hydrosilylation of multiple carbon–carbon bonds is a well-known process for the construction of organosilicon compounds. Nowadays, precious metal catalysts, especially platinum complexes, still occupy dominant positions in such processes. However, one important member of the precious metal family, iridium, is less used in this field. As early research mainly focused on developing stable and effective iridium catalysts, recent advances have disclosed the specific efficiency of simple iridium catalytic systems in the synthesis of functional organo­silicon compounds. This short review summarizes the utilization of iridium complexes for the hydrosilylation of alkenes and alkynes, with an emphasis on the recent advances published in the last decade.

1 Introduction

2 Iridium-Catalyzed Hydrosilylation of Alkenes

3 Iridium-Catalyzed Hydrosilylation of Alkynes

4 Conclusions and Perspectives

Key words

iridium

catalysis

hydrosilylation

alkenes

alkynes

 
  • References


    • For recent books, see:
    • 1a Lee VY. Organosilicon Compounds: From Theory to Synthesis to Applications. Elsevier; Amsterdam: 2017
    • 1b Hiyama T, Oestreich M. Organosilicon Chemistry: Novel Approaches and Reactions. Wiley-VCH; Weinheim: 2019

      For selected books and reviews, see:
    • 2a Marciniec B. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Dordrecht: 2009
    • 2b Troegel D, Stohrer J. Coord. Chem. Rev. 2011; 255: 1440
    • 2c Greenhalgh MD, Jones AS, Thomas SP. ChemCatChem 2015; 7: 190
    • 2d Nakajima Y, Shimada S. RSC Adv. 2015; 5: 20603
    • 2e Sun J, Deng L. ACS Cat. 2016; 6: 290
    • 2f Du X, Huang Z. ACS Cat. 2017; 7: 1227
    • 2g Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
    • 2h Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
  • 3 Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
  • 4 Marciniec B, Kownacki I. In Iridium Complexes in Organic Synthesis . Oro LA, Claver C. Wiley-VCH; Weinheim: 2009. Chap. 14, 345
    • 6a Chalk AJ. Chem. Commun. 1969; 1207
    • 6b Harrod JF, Gilson DF. R, Charles R. Can. J. Chem. 1969; 47: 2205
    • 6c Harrod JF, Smith CA. J. Am. Chem. Soc. 1970; 92: 2699
    • 6d Harrod JF, Smith CA. Can. J. Chem. 1970; 48: 870
  • 7 Haszeldine RN, Parish RV, Parry DJ. J. Chem. Soc. A 1969; 683
  • 8 Fernandez M.-J, Maitlis PM. Organometallics 1983; 2: 164
  • 9 Harrod JF, Chalk AJ. J. Am. Chem. Soc. 1964; 86: 1776
  • 10 Apple DC, Brady KA, Chance JM, Heard NE, Nile TA. J. Mol. Catal. 1985; 29: 55
  • 11 Onderdelinden AL, van der Ent A. Inorg. Chim. Acta 1972; 6: 420
  • 12 Oro LA, Fernández MJ, Esteruelas MA, Jiménez MS. J. Mol. Catal. 1986; 37: 151
    • 13a Fernández MJ, Esteruelas MA, Jiménez MS, Oro LA. Organometallics 1986; 5: 1519
    • 13b Fernández MJ, Esteruelas MA, Oro LA. Organometallics 1987; 6: 1751
  • 14 Hostetler MJ, Bergman RG. J. Am. Chem. Soc. 1990; 112: 8621
  • 15 Hostetler MJ, Butts MD, Bergman RG. Organometallics 1993; 12: 65
  • 16 Tanke RS, Crabtree RH. Organometallics 1991; 10: 415
  • 17 Tanke RS, Crabtree RH. J. Chem. Soc., Chem. Commun. 1990; 1056
  • 18 Tanke RS, Crabtree RH. J. Am. Chem. Soc. 1990; 112: 7984
  • 19 Szajek LP, Shapley JR. Organometallics 1994; 13: 1395
    • 20a Kownacki I, Kubicki M, Marciniec B. Inorg. Chim. Acta 2002; 334: 301
    • 20b Marciniec B, Kownacki I, Kubicki M. Organometallics 2002; 21: 3263
  • 21 Pawluc P, Marciniec B, Kownacki I, Maciejewski H. Appl. Organomet. Chem. 2005; 19: 49
  • 22 Kownacki I, Marciniec B, Macina A, Rubinsztajn S, Lamb D. Appl. Catal. A: Gen. 2007; 317: 53
  • 23 Cipot J, Ferguson MJ, Stradiotto M. Inorg. Chim. Acta 2006; 359: 2780
  • 24 Cipot J, McDonald R, Ferguson MJ, Schatte G, Stradiotto M. Organometallics 2007; 26: 594
  • 25 Igarashi M, Matsumoto T, Kobayashi T, Sato K, Ando W, Shimada S, Hara M, Uchida H. J. Organomet. Chem. 2014; 752: 141
  • 26 Riener K, Meister TK, Gigler P, Herrmann WA, Kühn FE. J. Catal. 2015; 331: 203
  • 27 Muchnij JA, Kwaramba FB, Rahaim RJ. Org. Lett. 2014; 16: 1330
  • 28 Xie X, Zhang X, Yang H, Ji X, Li J, Ding S. J. Org. Chem. 2019; 84: 1085
  • 29 Perales JB, Van Vraken DL. J. Org. Chem. 2001; 66: 7270
  • 30 Srinivas V, Nakajima Y, Sato K, Shimada S. Org. Lett. 2018; 20: 12
  • 31 Song L.-J, Ding S, Wang Y, Zhang X, Wu Y.-D, Sun J. J. Org. Chem. 2016; 81: 6157
  • 32 Zhang X, Gao C, Xie X, Liu Y, Ding S. Eur. J. Org. Chem. 2020; 556
  • 33 Gao W, Zhang X, Xie X, Ding S. Chem. Commun. 2020; 56: 2012
  • 34 Brady KA, Nile TA. J. Organomet. Chem. 1981; 206: 299
  • 35 Fernández MJ, Oro LA. J. Mol. Catal. 1988; 45: 7
  • 36 Jun C.-H, Crabtree RH. J. Organomet. Chem. 1993; 447: 177
  • 37 Crabtree RH. New J. Chem. 2003; 27: 771
    • 38a Ojima I, Clos N, Donovan RJ, Ingallina P. Organometallics 1990; 9: 3127
    • 38b Hill JE, Nile TA. J. Organomet. Chem. 1977; 137: 293
  • 39 Usón R, Oro LA, Carmona D, Esteruelas MA, Foces-Foces C, Cano FH, García-Blanco S. J. Organomet. Chem. 1983; 254: 249
  • 40 Esteruelas MA, Nürnberg O, Oliván M, Oro LA, Werner H. Organometallics 1993; 12: 3264
  • 41 Esteruelas MA, Oliván M, Oro LA, Tolosa JI. J. Organomet. Chem. 1995; 487: 143
  • 42 Esteruelas MA, Lahoz FJ, Oñate E, Oro LA, Rodríguez L. Organometallics 1996; 15: 823
  • 43 Esteruelas MA, Oliván M, Oro LA. Organometallics 1996; 15: 814
  • 44 Martín M, Sola E, Torres O, Plou P, Oro LA. Organometallics 2003; 22: 5406
  • 45 Martínez AP, Fabra MJ, García MP, Lahoz FJ, Oro LA, Teat SJ. Inorg. Chim. Acta 2005; 358: 1635
  • 46 Field LD, Ward AJ. J. Organomet. Chem. 2003; 681: 91
  • 47 Mas-Marzá E, Poyatos M, Sanaú M, Peris E. Inorg. Chem. 2004; 43: 2213
  • 48 Mas-Marzá E, Sanaú M, Peris E. Inorg. Chem. 2005; 44: 9961
  • 49 Viciano M, Mas-Marzá E, Sanaú M, Peris E. Organometallics 2006; 25: 3063
  • 50 Zanardi A, Peris E, Mata JA. New J. Chem. 2008; 32: 120
  • 51 Iglesias M, Pérez-Nicolás M, Miguel PJ. S, Polo V, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA. Chem. Commun. 2012; 48: 9480
  • 52 Iglesias M, Miguel PJ. S, Polo V, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA. Chem. Eur. J. 2013; 19: 17559
  • 53 Nguyen DH, Pérez-Torrente JJ, Jiménez MV, Modrego FJ, Gómez-Bautista D, Lahoz FJ, Oro LA. Organometallics 2013; 32: 6918
  • 54 Pérez-Torrente JJ, Nguyen DH, Jiménez MV, Modrego FJ, Puerta-Oteo R, Gómez-Bautista D, Iglesias M, Oro LA. Organometallics 2016; 35: 2410
  • 55 Sridevi VS, Fan WY, Leong WK. Organometallics 2007; 26: 1157
  • 56 Scheeren C, Maasarani F, Hijazi A, Djukic J.-P, Pfeffer M. Organometallics 2007; 26: 3336
  • 57 Corre Y, Werlé C, Brelot-Karmazin L, Djukic J.-P, Agbossou-Niedercorn F, Michon C. J. Mol. Catal. A: Chem. 2016; 423: 256
  • 58 Miyake Y, Isomura E, Iyoda M. Chem. Lett. 2006; 35: 836
  • 59 Xie X, Zhang X, Gao W, Meng C, Wang X, Ding S. Commun. Chem. 2019; 2: 101