Synlett 2021; 32(02): 119-139
DOI: 10.1055/s-0040-1707226
account
© Georg Thieme Verlag Stuttgart · New York

Adventures and Detours in the Synthesis of Hydropentalenes

Max Deimling
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
,
Anna Zens
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
,
Natja Park
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
,
Christine Hess
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
,
Simon Klenk
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
,
Zarfishan Dilruba
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
b   Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
,
Angelika Baro
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
,
a   Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany   Email: sabine.laschat@oc.uni-stuttgart.de
› Author Affiliations
Generous financial support by the Deutsche Forschungsgemeinschaft (DFG, project number 358283783 - SFB 1333, subproject B3), the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg, the Fonds der Chemischen Industrie and the European Commission (ERASMUS fellowship for Z.D.) is gratefully acknowledged.
Further Information

Publication History

Received: 16 June 2020

Accepted after revision: 30 June 2020

Publication Date:
18 August 2020 (online)


◊ These coauthors contributed equally to this work.

Abstract

Functionalized hydropentalenes (i.e., bicyclo[3.3.0]octanones) constitute important building blocks for natural products and for ligands for asymmetric catalysis. The assembly and tailored functionalization of this convex roof-shaped scaffold is challenging and has motivated a variety of synthetic approaches including our own contributions, which will be presented in this account.

1 Introduction

2 Biosynthesis of Hydropentalenes

3 Hydropentalenes through the Pauson–Khand Reaction

4 Hydropentalenes through Transannular Oxidative Cyclization of Cycloocta-1,4-diene

5 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Dodecahydrocyclopenta[a]indenes

6 Functionalization of Bicyclo[3.3.0]octan-1,4-diones to Crown Ether Hybrids

7 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Cylindramide

8 Tandem Ring-Opening Metathesis/Ring-Closing Metathesis/Cross-Metathesis of Bicyclo[2.2.1]heptanes

9 Functionalization of Bicyclo[3.3.0]octan-1,4-dione to Geodin A

10 Hydropentalenes through Enantioselective Desymmetrization of Weiss Diketones

11 Functionalization of Weiss Diketones by Carbonyl Ene Reactions

12 Functionalization of the Weiss Diketone to Cylindramide and Geodin A Core Units

13 Biological Properties of Bicyclo[3.3.0]octanes

14 Hydropentalenes through Vinylcyclopropane Cyclopentene Rearrangement

15 Functionalization of Bicyclo[3.3.0]octanes toward Chiral Dienes

16 Miscellaneous Syntheses of Hydropentalenes

17 Conclusion and Outlook

Supporting Information

 
  • References

  • 1 Singh V, Chandra G, Mobin SM. Synlett 2008; 3111
  • 2 Takeda R, Naoki H, Iwashita T, Hirose Y. Tetrahedron Lett. 1981; 22: 5307
  • 3 Whittle BJ. R, Moncada S, Whiting F, Vane JR. Prostaglandins 1980; 19: 605
  • 4 Bund J, Gais H.-J, Schmitz E, Erdelmeier I, Raabe G. Eur. J. Org. Chem. 1998; 1319
    • 5a Dickson JK, Fraser-Reid F. J. Chem. Soc., Chem. Commun. 1990; 1440
    • 5b Paquette LA, Roberts RA, Drtina G. J. Am. Chem. Soc. 1984; 106: 6690
  • 6 Bohlmann F, Zdero C, Bohlmann R, King RM, Robinson H. Phytochemistry 1980; 19: 579
    • 7a Srikrishna A, Gowri V. Tetrahedron: Asymmetry 2007; 18: 1663
    • 7b Guella G, Pietra F. Helv. Chim. Acta 2000; 83: 2946
    • 8a Nozoe S, Furukawa J, Sankawa U, Shibata S. Tetrahedron Lett. 1976; 17: 195
    • 8b Chandler CL, List B. J. Am. Chem. Soc. 2008; 130: 6737
  • 9 Wender PA, Dreyer GB. J. Am. Chem. Soc. 1982; 104: 5805
    • 10a Sugawara H, Kasuya A, Iitaka Y, Shibata S. Chem. Pharm. Bull. 1991; 39: 3051
    • 10b Zhang J, Wang X, Li S, Li D, Liu S, Lan Y, Gong J, Yang Z. Chem. Eur. J. 2015; 21: 12596
    • 11a Cane DE, Sohng J.-K, Williard PG. J. Org. Chem. 1992; 57: 844
    • 11b Liu Q, Yue G, Wu N, Lin G, Li Y, Quan J, Li C.-C, Wang G, Yang Z. Angew. Chem. 2012; 124: 12238 ; Angew. Chem. Int. Ed. 2012, 51, 12072
    • 11c Cane DE, Sohng J.-K. Biochemistry 1994; 33: 6524
  • 12 Kanazawa S, Fusetani N, Matsunaga S. Tetrahedron Lett. 1993; 34: 1065
    • 13a Capon RJ, Skene C, Lacey E, Gill JH, Wadsworth D, Friedel T. J. Nat. Prod. 1999; 62: 1256
    • 13b Capon RJ. Eur. J. Org. Chem. 2001; 633
  • 14 Bae M.-A, Yamada K, Ijuin Y, Tsuji T, Yazawa K, Tomono Y, Uemura D. Heterocycl. Commun. 1996; 2: 315
  • 15 Shigemori H, Bae M.-A, Yazawa K, Sasaki T, Kobayashi J. J. Org. Chem. 1992; 57: 4317

    • For reviews, see:
    • 16a Petermichl M, Schobert R. Synlett 2017; 654
    • 16b Schobert R, Schlenk A. Bioorg. Med. Chem. 2008; 16: 4203
    • 17a Cloke FG. N, Green JC, Kilpatrick AF. R, O’Hare D. Coord. Chem. Rev. 2017; 344: 238
    • 17b Hopf H. Angew. Chem. 2013; 125: 12446 ; Angew. Chem. Int. Ed. 2013, 52, 12224
    • 17c McCarroll AJ, Walton JC. Angew. Chem. 2001; 113: 2282 ; Angew. Chem. Int. Ed.; 2001, 40, 2224
    • 17d Cloke FG. N. Pure Appl. Chem. 2001; 73: 233
    • 17e Butenschön H. Angew. Chem. Int. Ed. 1997; 36: 1695
    • 17f Griesbeck AG, Deufel T, Malisch W, Neumayer M, Gunzelmann N. In Stereoselective Reactions of Metal-Activated Molecules, Proceedings of the 2nd Symposium, Würzburg, Germany, Sept. 21, 1994. Werner H, Sundermeyer J. Vieweg; Braunschweig: 1995: 165
  • 18 Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li X.-C, Du L. Antimicrob. Agents Chemother. 2007; 51: 64
    • 19a Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Angew. Chem. 2018; 130: 6329 ; Angew. Chem. Int. Ed. 2018, 57, 6221
    • 19b Li Y, Chen H, Ding Y, Xie Y, Wang H, Cerny RL, Shen Y, Du L. Angew. Chem. 2014; 126: 7654 ; Angew. Chem. Int. Ed. 2014, 53, 7524
    • 19c Xu L, Wu P, Wright SJ. Du L, Wei X. J. Nat. Prod. 2015; 78: 1841
  • 20 Blodgett JA. V, Oh D.-C, Cao S, Currie CR, Kolter R, Clardy J. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 11692
  • 21 Qi Y, Ding E, Blodgett JA. V. ACS Synth. Biol. 2018; 7: 352
    • 22a Greunke C, Glöckle A, Antosch J, Gulder TA. M. Angew. Chem. 2017; 129: 4416 ; Angew. Chem. Int. Ed. 2017, 56, 4351
    • 22b Antosch J, Schaefers F, Gulder TA. M. Angew. Chem. 2014; 126: 3055 ; Angew. Chem. Int. Ed. 2014, 53, 3011
  • 23 Zhang G, Zhang W, Zhang Q, Shi T, Ma L, Zhu Y, Li S, Zhang H, Zhao Y.-L, Shi R, Zhang C. Angew. Chem. 2014; 126: 4940 ; Angew. Chem. Int. Ed. 2014, 53, 4840
  • 24 Khand IU, Knox GR, Pauson PL, Watt WE. J. Chem. Soc. D. 1971; 36a

    • For reviews, see:
    • 25a Croatt MP, Wender PA. Eur. J. Org. Chem. 2010; 19
    • 25b Lee H.-W, Kwong F.-Y. Eur. J. Org. Chem. 2010; 789
    • 25c Blanco-Urgoiti J, Añorbe L, Pérez-Serrano L, Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2004; 33: 32
    • 25d Gibson SE, Stevenazzi A. Angew. Chem. 2003; 115: 1844 ; Angew. Chem. Int. Ed. 2003, 42, 1800
    • 25e Brummond KM, Kent JL. Tetrahedron 2000; 56: 3263
    • 25f Chung YK. Coord. Chem. Rev. 1999; 188: 297
    • 25g Geis O, Schmalz H.-G. Angew. Chem. 1998; 110: 955 ; Angew. Chem. Int. Ed. 1998, 37, 911

      For some preliminary work, see:
    • 26a Khand IU, Pauson PL, Habib MJ. A. J. Chem. Res., Synop. 1978; 348
    • 26b Schore NE, La Belle BE, Knudsen MJ, Hope H, Xu X.-J. J. Organomet. Chem. 1984; 272: 435
    • 27a Becheanu, A. Dissertation; Universität Stuttgart: Germany, 2006.
    • 27b Becheanu A, Bell T, Laschat S, Baro A, Frey W, Steinke N, Fischer P. Z. Naturforsch., B: J. Chem. Sci. 2006; 61: 589
  • 28 For a kinetic study of related intermolecular Pauson–Khand reactions, see: Cabot R, Lledó A, Revés M, Riera A, Verdaguer X. Organometallics 2007; 26: 1134
  • 29 Aiguabella N, del Pozo C, Verdaguer X, Fustero S, Riera A. Angew. Chem. 2013; 125: 5463 ; Angew. Chem. Int. Ed. 2013, 52, 5355
  • 30 Cabré A, Verdaguer X, Riera A. Synthesis 2017; 49: 3945
  • 31 Becheanu A, Laschat S. Synlett 2002; 1865
  • 32 Becheanu A, Baro A, Laschat S, Frey W. Eur. J. Org. Chem. 2006; 2215
    • 33a Laschat S, Becheanu A, Bell T, Baro A. Synlett 2005; 2547
    • 33b Gibson SE, Kaufmann KA. C, Loch JA, Steed JW, White AJ. P. Chem. Eur. J. 2005; 11: 2566
  • 34 Orgué S, León T, Riera A, Verdaguer X. Org. Lett. 2015; 17: 250
  • 35 For a review, see: Shibata T. Adv. Synth. Catal. 2006; 348: 2328
    • 36a Hicks FA, Kablaoui NM, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 9450
    • 36b Hicks FA, Kablaoui NM, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 5881
  • 37 Sturla SJ, Buchwald SL. J. Org. Chem. 2002; 67: 3398
  • 38 Kobayashi T, Koga Y, Narasaka K. J. Organomet. Chem. 2001; 624: 73
  • 39 Park KH, Son SU, Chung YK. Chem. Commun. 2003; 1898
  • 40 For a review of the Pauson–Khand reaction with nanoparticles, see: Park KH, Chung YK. Synlett 2005; 545
    • 41a Boñaga LV. R, Krafft ME. Tetrahedron 2004; 60: 9795
    • 41b Krafft ME, Boñaga LV. R, Wright JA, Hirosawa C. J. Org. Chem. 2002; 67: 1233
  • 42 For a review of Pauson–Khand reactions in natural product synthesis, see: Shi L, Yang Z. Eur. J. Org. Chem. 2016; 2356
  • 43 For a review of intermolecular Pauson–Khand reactions, see: Gibson SE, Mainolfi N. Angew. Chem. 2005; 117: 3082

    • For selected examples, see:
    • 44a Adrio J, Rodríguez Rivero M, Carretero JC. Org. Lett. 2005; 7: 431
    • 44b Rodríguez Rivero M, Adrio J, Carretero JC. Synlett 2005; 26
  • 45 Carretero JC, Adrio J. Synthesis 2001; 1888
  • 46 Barluenga J, Álvarez-Fernández A, Suárez-Sobrino AL, Tomás M. Angew. Chem. 2012; 124: 187 ; Angew. Chem. Int. Ed. 2012, 51, 183
  • 47 Moriarty RM, Duncan MP, Vaid RK, Prakash O. Org. Synth. 1990; 68: 175
  • 48 Henry PM, Davies M, Ferguson G, Phillips S, Restivo R. J. Chem. Soc., Chem. Commun. 1974; 112
  • 49 Cramer N, Laschat S, Baro A, Schwalbe H, Richter C. Angew. Chem. 2005; 117: 831 ; Angew. Chem. Int. Ed. 2005, 44, 820
  • 50 Cramer N, Buchweitz M, Laschat S, Frey W, Baro A, Mathieu D, Richter C, Schwalbe H. Chem. Eur. J. 2006; 12: 2488
    • 51a For selected examples of the use of diketone 42 or diol 40e in natural product syntheses; (+)-kelsoene: Mehta G, Srinivas K. Tetrahedron Lett. 2001; 42: 2855
    • 51b (–)-pepluanol B: Zhang J, Liu M, Wu C, Zhao G, Chen P, Zhou L, Xie X, Fang R, Li H, She X. Angew. Chem. 2020; 132: 3994; Angew. Chem. Int. Ed. 2020, 59, 3966
  • 53 Gunasekera SP, Gunasekera M, McCarthy P. J. Org. Chem. 1991; 56: 4830
  • 54 Kobayashi J, Ishibashi M. Chem. Rev. 1993; 93: 1753
  • 55 Blodgett JA. V, Oh D.-C, Cao S, Currie CR, Kolter R, Clardy J. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 11692
  • 56 Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H. J. Antibiot. 1996; 49: 1101
  • 57 Graupner PR, Thornburgh S, Mathieson JT, Chapin EL, Kemmitt GM, Brown JM, Snipes CE. J. Antibiot. 1997; 50: 1014
  • 58 Krebs M, Kalinowski M, Frey W, Claasen B, Baro A, Schobert R, Laschat S. Tetrahedron 2013; 69: 7373
  • 59 Crane EA, Gademann K. Angew. Chem. 2016; 128: 3948 ; Angew. Chem. Int. Ed. 2016, 55, 3882
  • 60 Wach J.-Y, Gademann K. Synlett 2012; 163
  • 61 Hollemann AF. Lehrbuch der Anorganischen Chemie . Wiberg E. de Gruyter; Berlin: 1995
  • 62 Park N. Dissertation. Universität Stuttgart; Germany: 2013. see Supporting Information for detail
  • 63 Hart AC, Phillips AJ. J. Am. Chem. Soc. 2006; 128: 1094
  • 64 Stragies R, Blechert S. Synlett 1998; 169
  • 65 Schrock RR, Hoveyda AH. Angew. Chem. 2003; 115: 4740 ; Angew. Chem. Int. Ed. 2003, 42, 4592
  • 66 Arjona A, Csáky AG, Plumet J. Eur. J. Org. Chem. 2003; 611
  • 67 Hagiwara H, Katsumi T, Endou S, Hoshi T, Suzuki T. Tetrahedron 2002; 58: 6651
  • 68 Wrobleski A, Sahasrabudhe K, Aubé J. J. Am. Chem. Soc. 2004; 126: 5475
  • 69 Funel J.-A, Prunet J. Synlett 2005; 235
  • 70 Henderson JA, Phillips AJ. Angew. Chem. 2008; 120: 8627 ; Angew. Chem. Int. Ed. 2008, 47, 8499
  • 71 Phillips JA, Hart AC, Henderson JA. Tetrahedron Lett. 2006; 47: 3743
  • 72 Kotha S, Reddy Keesari R, Ansari S. Synthesis 2019; 51: 3989
  • 73 Hofmann C. Dissertation. Universität Stuttgart; Germany: 2013. see Supporting Information for detail
  • 74 Hofmann C, Baro A, Laschat S. Synlett 2008; 1618
    • 75a Bertz SH, Cook JM, Gawish A, Weiss U. Org. Synth. 1986; 64: 27
    • 75b Kubiak G, Cook JM, Weiss U. J. Org. Chem. 1984; 49: 561

      For reviews, see:
    • 76a O’Brien P. J. Chem. Soc., Perkin Trans. 1 1998; 1439
    • 76b O’Brien P. J. Chem. Soc., Perkin Trans. 1 2001; 95
    • 76c Simpkins NS. Quim. Nova 1995; 18: 295
    • 76d Simpkins NS. Chem. Soc. Rev. 1990; 19: 335
    • 76e Cox PJ, Simpkins NS. Tetrahedron: Asymmetry 1991; 2: 1
    • 77a Sugasawa K, Shindo M, Noguchi H, Koga K. Tetrahedron Lett. 1996; 37: 7377
    • 77b Aoki K, Noguchi H, Tomioka K, Koga K. Tetrahedron Lett. 1993; 34: 5105
    • 77c Izawa H, Shirai R, Kawasaki H, Kim H.-d, Koga K. Tetrahedron Lett. 1989; 30: 7221
    • 77d Shirai R, Tanaka M, Koga K. J. Am. Chem. Soc. 1986; 108: 543
  • 78 Leonard J, Ouali D, Rahman SK. Tetrahedron Lett. 1990; 31: 739
  • 79 Vaulont I, Gais H.-J, Reuter N, Schmitz E, Ossenkamp RK. L. Eur. J. Org. Chem. 1998; 805
  • 80 Lutz V, Baro A, Fischer P, Laschat S. Eur. J. Org. Chem. 2010; 1149
  • 81 Klenk S. Master’s Thesis. Universität Stuttgart; Germany: 2013. see Supporting Information for detail
  • 82 Anderl T, Emo M, Laschat S, Baro A, Frey W. Synthesis 2008; 1619
    • 83a Shapiro RH, Lipton MF, Kolonko KJ, Buswell RL, Capuano LA. Tetrahedron Lett. 1975; 16: 1811

    • For reviews, see:
    • 83b Shapiro RH. Org. React (N. Y.) 1976; 23: 405
    • 83c Adlington RM, Barrett AG. M. Acc. Chem. Res. 1983; 16: 55
    • 83d Caille JC, Farnier M, Guilard R. Can. J. Chem. 1986; 64: 824
  • 84 Lutz V, Park N, Rothe C, Krüger C, Baro A, Laschat S. Eur. J. Org. Chem. 2013; 761
  • 85 Cramer N, Helbig S, Baro A, Laschat S, Diestel R, Sasse F, Mathieu D, Richter C, Kummerlöwe G, Luy B, Schwalbe H. ChemBioChem 2008; 9: 2474
  • 86 Lutz V, Mannchen F, Krebs M, Park N, Krüger C, Raja A, Sasse F, Baro A, Laschat S. Bioorg. Med. Chem. 2014; 22: 3252
  • 87 Hudlicky T, Becker DA, Fan RL, Kozhushkov SI. In Houben-Weyl, Methoden der Organischen Chemie, Vol. E17c. de Meijere A. Thieme; Stuttgart: 1997
  • 88 Zuo G, Louie J. Angew. Chem. 2004; 116: 2327 ; Angew. Chem. Int. Ed. 2004, 43, 2277
  • 89 Zens A, Seubert P, Kolb B, Wurster M, Holzwarth M, Mannchen F, Forschner R, Claasen B, Kunz D, Laschat S. Synthesis 2018; 50: 2367
  • 90 Zens A, Bauer F, Kolb B, Mannchen F, Seubert P, Forschner R, Flaig KS, Köhn A, Kunz D, Laschat S. Eur. J. Org. Chem. 2019; 6285
  • 91 Hayashi T, Ueyama K, Tokunaga N, Yoshida K. J. Am. Chem. Soc. 2003; 125: 11508
  • 92 Fischer C, Defieber C, Suzuki T, Carreira EM. J. Am. Chem. Soc. 2004; 126: 1628
  • 93 Maire P, Deblon S, Breher F, Geier J, Böhler C, Rüegger H, Schönberg H, Grützmacher H. Chem. Eur. J. 2004; 10: 4198

    • For reviews, see:
    • 94a Defieber C, Grützmacher H, Carreira EM. Angew. Chem. 2008; 120: 4558, Angew. Chem. Int. Ed. 2008, 47, 4482
    • 94b Johnson JB, Rovis T. Angew. Chem. 2008; 120: 852 ; Angew. Chem. Int. Ed. 2008, 47, 840
    • 94c Müller D, Alexakis A. Chem. Commun. 2012; 48: 12037
    • 94d Maksymowicz RM, Bissette AJ, Fletcher SP. Chem. Eur. J. 2015; 21: 5668
  • 95 Helbig S, Sauer S, Cramer N, Laschat S, Baro A, Frey W. Adv. Synth. Catal. 2007; 349: 2331
  • 96 Helbig S, Axenov KV, Tussetschläger S, Frey W, Laschat S. Tetrahedron Lett. 2012; 53: 3506
  • 97 Wang Z.-Q, Feng C.-G, Xu M.-H, Lin G.-Q. J. Am. Chem. Soc. 2007; 129: 5336
    • 98a Kantchev EA. B. Chem. Sci. 2013; 4: 1864
    • 98b Qin H.-L, Chen X.-Q, Shang Z.-P, Kantchev EA. B. Chem. Eur. J. 2015; 21: 3079
  • 99 For other theoretical work, see: Sieffert N, Boisson J, Py S. Chem. Eur. J. 2015; 21: 9753
  • 100 Mühlhäuser T, Savin A, Frey W, Baro A, Schneider AJ, Döteberg H.-G, Bauer F, Köhn A, Laschat S. J. Org. Chem. 2017; 82: 13468
  • 101 Melcher MC, Alves da Silva BR, Ivšić T, Strand D. ACS Omega 2018; 3: 3622
  • 102 Deimling M, Kirchhof M, Schwager B, Qawasmi Y, Savin A, Mühlhäuser T, Frey W, Claasen B, Baro A, Sottmann T, Laschat S. Chem. Eur. J. 2019; 25: 9464
  • 103 Kahlweit M, Strey R. Angew. Chem. Int. Ed. 1985; 24: 654

    • For reviews, see:
    • 104a Nagamoto M, Nishimura T. ACS Catal. 2017; 7: 833
    • 104b Feng C.-G, Xu M.-H, Lin G.-Q. Synlett 2011; 1345

      For hydropentalene-derived dienes, see:
    • 105a Wang L, Wang Z.-Q, Xu M.-H, Lin G.-Q. Synthesis 2010; 3263
    • 105b Shao C, Yu H.-J, Wu N.-Y, Tian P, Wang R, Feng C.-G, Lin G.-Q. Org. Lett. 2011; 13: 788
    • 105c Cui Z, Yu H.-J, Yang R.-F, Gao W.-Y, Feng C.-G, Lin G.-Y. J. Am. Chem. Soc. 2011; 133: 12394
    • 105d Yang H, Xu M. Chin. J. Chem. 2013; 31: 119
    • 105e Liao Y.-X, Xing C.-H, Hu Q.-S. Org. Lett. 2012; 14: 1544
    • 105f Yu H.-J, Shao C, Cui Z, Feng C.-G, Lin G.-Q. Chem. Eur. J. 2012; 18: 13274
    • 105g Cui Z, Chen Y.-J, Gao W.-Y, Feng C.-G, Lin G.-Q. Org. Lett. 2014; 16: 1016
    • 105h Chen Y.-J, Chen Y.-H, Feng C.-G, Lin G.-Q. Org. Lett. 2014; 16: 3400
    • 105i Zhang Q, Stockdale DP, Mixdorf JC, Topczewski JJ, Nguyen HM. J. Am. Chem. Soc. 2015; 137: 11912
    • 106a Feng C.-G, Wang Z.-Q, Shao C, Xu M.-H, Lin G.-Q. Org. Lett. 2008; 10: 4101
    • 106b Wang Z.-Q, Feng C.-G, Zhang S.-S, Xu M.-H, Lin G.-Q. Angew. Chem. 2010; 122: 5916 ; Angew. Chem. Int. Ed. 2010, 49, 5780
    • 106c Zhang S.-S, Wang Z.-Q, Xu M.-H, Lin G.-Q. Org. Lett. 2010; 12: 5546
    • 106d Pecchioli T, Christmann M. Org. Lett. 2018; 20: 5256
  • 107 Tu X.-S, Zeng N.-N, Li R.-Y, Zhao Y.-Q, Xie D.-Z, Peng Q, Wang X.-C. Angew. Chem. 2018; 130: 15316 ; Angew. Chem. Int. Ed. 2018, 57, 15096
  • 108 Werner T, Hoffmann M, Deshmukh S. Eur. J. Org. Chem. 2014; 6630
  • 109 Gao J, Rao P, Xu K, Wang S, Wu Y, He C, Ding H. J. Am. Chem. Soc. 2020; 142: 4592
  • 110 Hu X.-D, Fan C.-A, Zhang F.-M, Tu YQ. Angew. Chem. 2004; 116: 1734 ; Angew. Chem. Int. Ed. 2004, 43, 1702
  • 111 Huang H.-M, He Q, Procter DJ. Synlett 2020; 31: 45
  • 112 Garayalde D, Nevado C. Beilstein J. Org. Chem. 2011; 7: 767
  • 113 Sethofer SG, Staben ST, Hung OY, Toste FD. Org. Lett. 2008; 10: 4315
  • 114 Brandstätter M, Freis M, Huwyler N, Carreira EM. Angew. Chem. 2019; 131: 2512 ; Angew. Chem. Int. Ed. 2019, 58, 2490
  • 115 Inoue M, Sato T, Hirama M. Angew. Chem. 2006; 118: 4961 ; Angew. Chem. Int. Ed. 2006, 45, 4843