Synlett 2021; 32(02): 142-158
DOI: 10.1055/s-0040-1707217
cluster
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Sulfur-Containing Heterocycle Formation via Direct C–H Sulfuration with Elemental Sulfur

Saiwen Liu
a   College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. of China
b   Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. of China   Email: gjdeng@xtu.edu.cn   Email: hwhuang@xtu.edu.cn
,
Guo-Jun Deng
b   Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. of China   Email: gjdeng@xtu.edu.cn   Email: hwhuang@xtu.edu.cn
,
Huawen Huang
b   Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. of China   Email: gjdeng@xtu.edu.cn   Email: hwhuang@xtu.edu.cn
› Author Affiliations
We thank the Normal Project Foundation of Hunan Provincial Education Department (18C0845), the National Natural Science Foundation of China (21871226), and the Science and Technology Planning Project of Hunan Province (2019RS2039) for financial support.
Further Information

Publication History

Received: 29 May 2020

Accepted after revision: 30 June 2020

Publication Date:
07 August 2020 (online)


Published as part of the Cluster Modern Heterocycle Synthesis and Functionalization

Abstract

The synthesis of sulfur heterocycles via the construction of C–S bonds has received considerable attention due to their biological value and extensive pharmaceutical application. While diverse sulfurating agents have been developed over the past few decades, in this regard, elemental sulfur, with advantages of low toxicity, odorless nature and chemical stability, has great potential for the construction of diverse sulfur heterocycles through its direct incorporation into the target molecules in a concise way. Direct functionalization of inert C–H bonds can shorten the number of reaction steps and minimize the amount of waste formed. Hence, heteroannulations via direct C–H sulfuration is considered to be an attractive strategy for the synthesis of sulfur heterocycles. In the last few years, a vast array of concise systems have been reported for the synthesis of some valuable sulfur heterocycles such as thiophenes, thienoindoles, thienothiazoles, thiazoles, benzothiazoles, and thiadiazoles through direct C–H sulfuration/annulations with elemental sulfur. These are discussed in detail in this review.

1 Introduction

2 Thiophenes

3 Thienoindoles

4 Thienothiazoles

5 Other Fused Thiophenes

6 Thiazoles

7 Benzothiazoles

8 Thiadiazoles

9 Others

10 Summary and Outlook

 
  • References and Notes

    • 1a Domling A, Beck B, Eichelberger U, Sakamuri S, Menon S, Chen QZ, Lu Y, Wessjohann LA. Angew. Chem. Int. Ed. 2006; 45: 7235
    • 1b Tomasic T, Katsamakas S, Hodnik Z, Ilas J, Brvar M, Solmajer T, Montalvao S, Tammela P, Banjanac M, Ergovic G, Anderluh M, Peterlin Masic L, Kikelj D. J. Med. Chem. 2015; 58: 5501
    • 1c Wojtas KP, Riedrich M, Lu JY, Winter P, Winkler T, Walter S, Arndt HD. Angew. Chem. Int. Ed. 2016; 55: 9772
    • 1d Zhao J, Jiang X. Chin. Chem. Lett. 2018; 29: 1079
    • 1e Feng MH, Tang BQ, Liang SH, Jiang XF. Curr. Top. Med. Chem. 2016; 16: 1200
    • 1f Wang NZ, Saidhareddy P, Jiang XF. Nat. Prod. Rep. 2020; 37: 246
  • 2 Kanbe K, Naganawa H, Nakamura KT, Okami Y, Takeuchi T. Biosci., Biotechnol., Biochem. 1993; 57: 632
  • 3 Schentag J.-J, Smith LL, Swanson DJ, DeAngelis C, Fracasso JE, Vari A, Vance JW. Am. J. Med. 1984; 77: 43
  • 4 Tishler RB, Lamppu DM, Park S, Brendan DP. Cancer Res. 1995; 55: 6021
    • 5a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 5b Lee CF, Liu YC, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 5c Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 5d Shen C, Zhang P, Sun Q, Bai S, Hor TS, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 5e Qiao Z, Jiang X. Org. Biomol. Chem. 2017; 15: 1942
    • 5f Liu J, Zheng L. Adv. Synth. Catal. 2019; 361: 1710
    • 5g Wang M, Li YP, Jiang XF. Aldrichimica Acta 2020; 53: 19
    • 6a Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
    • 6b Nguyen TB. Adv. Synth. Catal. 2020; DOI: 10.1002/adsc.202000535.
    • 6c Fedenok LG, Fedotov KY, Pritchina EA, Polyakov NE. Tetrahedron Lett. 2016; 57: 1273
    • 6d Huang MQ, Li TJ, Liu JQ, Shatskiy A, Kärkäs MD, Wang XS. Org. Lett. 2020; 22: 3454
    • 6e Petrov V, Dooley RJ, Marchione AA, Diaz EL, Clem BS. J. Fluorine Chem. 2019; 225: 1
    • 6f Ying J, Wang H, Qi XX, Peng JB, Wu XF. Eur. J. Org. Chem. 2018; 688
    • 6g Sakai N, Horikawa S, Ogiwara Y. Synthesis 2018; 50: 565
    • 6h Petrov V, Marchione AA, Dooley R. Chem. Commun. 2018; 54: 9298
    • 6i Ibragimov AG, Makhmudiyarov GA, Shaibakova MG, Khalilov LM, Dzhemilev UM. Russ. J. Org. Chem. 2019; 55: 1890
    • 7a Liu W, Chen C, Liu H. Adv. Synth. Catal. 2015; 357: 4050
    • 7b Zhang G, Yi H, Chen H, Bian C, Liu C, Lei A. Org. Lett. 2014; 16: 6156
    • 8a Jiang P, Che X, Liao Y, Huang H, Deng G.-J. RSC Adv. 2016; 6: 41751
    • 8b Nguyen LA, Ngo QA, Retailleau P, Nguyen TB. Green Chem. 2017; 19: 4289
    • 8c Nguyen TB, Ermolenko L, Retailleau P, Al-Mourabit A. Angew. Chem. Int. Ed. 2014; 53: 13808
    • 8d Siva ReddyA, Kumara SwamyK. C. Org. Lett. 2015; 17: 2996
    • 8e Xie H, Li G, Zhang F, Xiao F, Deng G.-J. Green Chem. 2018; 20: 827
    • 8f Yang Z, Hu R, Li X, Wang X, Gu R, Han S. Tetrahedron Lett. 2017; 58: 2366
    • 8g Wang M, Fan QL, Jiang XF. Org. Lett. 2016; 18: 5756
    • 9a Chen FJ, Liao G, Li X, Wu J, Shi BF. Org. Lett. 2014; 16: 5644
    • 9b Chen J, Li G, Xie Y, Liao Y, Xiao F, Deng GJ. Org. Lett. 2015; 17: 5870
    • 9c Xie H, Cai J, Wang Z, Huang H, Deng GJ. Org. Lett. 2016; 18: 2196
    • 9d Chen S, Wang M, Jiang X. Acta Phys.-Chim. Sin. 2019; 35: 954
    • 10a Colletto C, Islam S, Julia-Hernandez F, Larrosa I. J. Am. Chem. Soc. 2016; 138: 1677
    • 10b Sudo Y, Yamaguchi E, Itoh A. Org. Lett. 2017; 19: 1610
    • 10c Tang DT, Collins KD, Glorius F. J. Am. Chem. Soc. 2013; 135: 7450
    • 10d Zhang Y, Zhao H, Zhang M, Su W. Angew. Chem. Int. Ed. 2015; 54: 3817
    • 11a Bharathiraja G, Sathishkannan G, Punniyamurthy T. J. Org. Chem. 2016; 81: 2670
    • 11b Jullien H, Quiclet-Sire B, Tetart T, Zard SZ. Org. Lett. 2014; 16: 302
    • 11c Pigulski B, Mecik P, Cichos J, Szafert S. J. Org. Chem. 2017; 82: 1487
    • 11d Talbi I, Alayrac C, Lohier JF, Touil S, Witulski B. Org. Lett. 2016; 18: 2656
  • 13 Shao W, Kaldas SJ, Yudin AK. Chem. Sci. 2017; 8: 4431
  • 14 Thomas J, Jana S, Sonawane M, Fiey B, Balzarini J, Liekens S, Dehaen W. Org. Biomol. Chem. 2017; 15: 3892
  • 15 Kavitha K, Srikrishna D, Dubey PK, Aparna P. J. Sulfur Chem. 2019; 40: 195
  • 16 Nguyen TT. T, Le VA, Retailleau P, Nguyen TB. Adv. Synth. Catal. 2019; 362: 160
  • 17 Nguyen TB, Pasturaud K, Ermolenko L, Al-Mourabit A. Org. Lett. 2015; 17: 2562
  • 18 Nguyen TB, Retailleau P. Green Chem. 2018; 20: 387
  • 19 Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 4858
  • 20 Nguyen TB, Retailleau P. Org. Lett. 2018; 20: 186
  • 21 Wang Z, Qu Z, Xiao F, Huang H, Deng G.-J. Adv. Synth. Catal. 2018; 360: 796
    • 22a Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Amanlou M. Synlett 2018; 29: 1583
    • 22b Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Yazzaf R, Amanlou M. Eur. J. Org. Chem. 2018; 3001
  • 23 Sakai S, Sato K, Yoshida K. Tetrahedron Lett. 2020; 61: 151476
  • 24 Fukutani T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 2867
  • 25 Moon S, Kato M, Nishii Y, Miura M. Adv. Synth. Catal. 2020; 362: 1669
  • 26 Meng L, Fujikawa T, Kuwayama M, Segawa Y, Itami K. J. Am. Chem. Soc. 2016; 138: 10351
  • 27 Shoji T, Miura K, Ohta A, Sekiguchi R, Ito S, Endo Y, Nagahata T, Mori S, Okujima T. Org. Chem. Front. 2019; 6: 2801
  • 28 Wu J, He D, Wang Y, Su F, Guo Z, Lin J, Zhang HJ. Org. Lett. 2018; 20: 6117
  • 29 Su F, Chen S, Mo X, Wu K, Wu J, Lin W, Lin Z, Lin J, Zhang H.-J, Wen T.-B. Chem. Sci. 2020; 11: 1503
  • 30 Chen L, Xia P, Du T, Deng Y, Xiao Y. Org. Lett. 2019; 21: 5529
  • 31 Pedras MS, Suchy M. Bioorg. Med. Chem. 2006; 14: 714
  • 32 Baert F, Cabanetos C, Allain M, Silvestre V, Leriche P, Blanchard P. Org. Lett. 2016; 18: 1582
  • 33 Liao Y, Peng Y, Qi H, Deng GJ, Gong H, Li CJ. Chem. Commun. 2015; 51: 1031
  • 34 Li B, Ni P, Huang H, Xiao F, Deng G.-J. Adv. Synth. Catal. 2017; 359: 4300
    • 35a Chen S, Li Y, Ni P, Huang H, Deng GJ. Org. Lett. 2016; 18: 5384
    • 35b Chen S, Li Y, Ni P, Yang B, Huang H, Deng GJ. J. Org. Chem. 2017; 82: 2935
    • 35c Chen S, Wang L, Zhang J, Hao Z, Huang H, Deng GJ. J. Org. Chem. 2017; 82: 11182
  • 36 Ni P, Li B, Huang H, Xiao F, Deng G.-J. Green Chem. 2017; 19: 5553
  • 37 Nguyen TT, Tran PH. RSC Adv. 2020; 10: 9663
  • 38 Zhang H.-L, Wen F, Sheng W.-B, Yin P, Zhang C.-T, Peng C.-Y, Peng D.-M, Liao D.-F, Fu R.-G. Tetrahedron Lett. 2019; 60: 80
  • 39 Lu C, Huang H, Tuo X, Jiang P, Zhang F, Deng G.-J. Org. Chem. Front. 2019; 6: 2738
  • 40 Liu Z, Gao R, Lou J, He Y, Yu Z. Adv. Synth. Catal. 2018; 360: 3097
  • 41 Liu J, Zhang Y, Yue Y, Wang Z, Shao H, Zhuo K, Lv Q, Zhang Z. J. Org. Chem. 2019; 84: 12946
  • 42 Huang H, Xu Z, Ji X, Li B, Deng GJ. Org. Lett. 2018; 20: 4917
  • 43 Huang H, Wang Q, Xu Z, Deng GJ. Adv. Synth. Catal. 2018; 361: 591
  • 44 Huang H, Qu Z, Ji X, Deng G.-J. Org. Chem. Front. 2019; 6: 1146
    • 45a Tang X, Yang J, Zhu Z, Zheng M, Wu W, Jiang H. J. Org. Chem. 2016; 81: 11461
    • 45b Zhu Z, Tang X, Cen J, Li J, Wu W, Jiang H. Chem. Commun. 2018; 54: 3767
  • 46 Zhou P, Huang Y, Wu W, Yu W, Li J, Zhu Z, Jiang H. Org. Biomol. Chem. 2019; 17: 3424
  • 47 Pham PH, Nguyen KX, Pham HT. B, Tran TT, Nguyen TT, Phan NT. S. RSC Adv. 2020; 10: 11024
  • 48 Zhang W, Tao SQ, Ge HB, Li Q, Ai ZK, Li XX, Zhang BB, Sun FX, Xu XQ, Du YF. Org. Lett. 2020; 22: 448
  • 49 Pham PH, Nguyen KX, Pham HT. B, Nguyen TT, Phan NT. S. Org. Lett. 2019; 21: 8795
  • 50 Zhou P, Huang Y, Wu W, Zhou J, Yu W, Jiang H. Org. Lett. 2019; 21: 9976
  • 51 Pham PH, Nguyen KX, Nguyen NP, Pham HT. B, Nguyen TT, Phan NT. S. Asian J. Org. Chem. 2020; 9: 622
  • 52 Shi T, Zerio CJ, Sivinski J, Ambrose AJ, Moore KT, Buckley T, Kaneko L, Zhang M, Zhang DD, Chapman E. Eur. J. Org. Chem. 2019; 3269
    • 53a Ravi C, Adimurthy S. Chem. Rec. 2017; 17: 1019
    • 53b Ravi C, Joshi A, Adimurthy S. Eur. J. Org. Chem. 2017; 3646
  • 54 Semwal R, Ravi C, Saxena S, Adimurthy S. J. Org. Chem. 2019; 84: 14151
  • 55 Xu Z, Deng GJ, Zhang F, Chen H, Huang H. Org. Lett. 2019; 21: 8630
  • 56 Teja C, Nawaz Khan FR. Org. Lett. 2020; 22: 1726
  • 57 Zhang P, Chen W, Liu M, Wu H. Org. Lett. 2019; 21: 9326
  • 58 Wilson ZE, Fenner S, Ley SV. Angew. Chem. Int. Ed. 2015; 54: 1284
    • 59a Hantzsch A. Ber. Dtsch. Chem. Ges. 1888; 21: 942
    • 59b Kumar SV, Parameshwarappa G, Ila H. J. Org. Chem. 2013; 78: 7362
  • 60 Wu M, Jiang Y, An Z, Qi Z, Yan R. Adv. Synth. Catal. 2018; 360: 4236
  • 61 Wang X, Qiu X, Wei J, Liu J, Song S, Wang W, Jiao N. Org. Lett. 2018; 20: 2632
  • 62 Okesola BO, Mata A. Chem. Soc. Rev. 2018; 47: 3721
  • 63 Jiang J, Huang H, Deng G.-J. Green Chem. 2019; 21: 986
  • 64 Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P. J. Org. Chem. 2019; 84: 12237
  • 65 Ni P, Tan J, Li R, Huang H, Zhang F, Deng G.-J. RSC Adv. 2020; 10: 3931
  • 66 Jonaghani MZ, Zali-Boeini H, Taheri R, Rudbari HA, Askari B. RSC Adv. 2016; 6: 34940
  • 67 Li G, Xie H, Chen J, Guo Y, Deng G.-J. Green Chem. 2017; 19: 4043
  • 68 Che X, Jiang J, Xiao F, Huang H, Deng GJ. Org. Lett. 2017; 19: 4576
  • 69 Singh M, Awasthi P, Singh V. Eur. J. Org. Chem. 2020; 1023
    • 70a Dang P, Zheng Z, Liang Y. J. Org. Chem. 2017; 82: 2263
    • 70b Zhang X, Zeng W, Yang Y, Huang H, Liang Y. Org. Lett. 2014; 16: 876
  • 71 Zhu X, Yang Y, Xiao G, Song J, Liang Y, Deng G. Chem. Commun. 2017; 53: 11917
  • 72 Jiang J, Li G, Zhang F, Xie H, Deng G.-J. Adv. Synth. Catal. 2018; 360: 1622
  • 73 Liu Y, Yuan X, Guo X, Zhang X, Chen B. Tetrahedron 2018; 74: 6057
  • 74 Zhang J, Zhao X, Liu P, Sun P. J. Org. Chem. 2019; 84: 12596
    • 75a Wang HM, Cao XX, Xiao FH, Liu SW, Deng GJ. Org. Lett. 2013; 15: 4900
    • 75b Wu M, Hu X, Liu J, Liao Y, Deng GJ. Org. Lett. 2012; 14: 2722
  • 76 Xing Q, Ma Y, Xie H, Xiao F, Zhang F, Deng GJ. J. Org. Chem. 2019; 84: 1238
    • 77a Chen J, Chang D, Xiao F, Deng G.-j. Prog. Chem. 2018; 30: 564
    • 77b Girard SA, Huang H, Zhou F, Deng G.-J, Li C.-J. Org. Chem. Front. 2015; 2: 279
  • 78 Xu Z, Huang H, Chen H, Deng G.-J. Org. Chem. Front. 2019; 6: 3060
  • 79 Wang Z, Xie H, Xiao F, Guo Y, Huang H, Deng G.-J. Eur. J. Org. Chem. 2017; 1604
    • 80a Chen J, Jiang Y, Yu JT, Cheng J. J. Org. Chem. 2016; 81: 271
    • 80b Zhou Z, Liu Y, Chen J, Yao E, Cheng J. Org. Lett. 2016; 18: 5268
  • 81 Zhou Z, Liu M, Sun S, Yao E, Liu S, Wu Z, Yu J.-T, Jiang Y, Cheng J. Tetrahedron Lett. 2017; 58: 2571
  • 82 Yang Z, Liang Y, Li A, Liu K, Li L, Yang T, Zhou C. J. Org. Chem. 2019; 84: 16262
  • 83 Ishikawa T, Kimura M, Kumoi T, Iida H. ACS Catal. 2017; 7: 4986
  • 84 Li W, He J, Liu P, Zhang J, Dai B. ChemistrySelect 2019; 4: 10587
  • 85 Mo SK, Teng QH, Pan YM, Tang HT. Adv. Synth. Catal. 2019; 361: 1756
  • 86 Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 3879
  • 87 Guo JR, Gong JF, Song MP. Org. Biomol. Chem. 2019; 17: 5029
  • 88 Zhang J, Song C, Sheng L, Liu P, Sun P. J. Org. Chem. 2019; 84: 2191
  • 89 Nguyen TB, Retailleau P. Org. Lett. 2019; 21: 279
  • 90 Jiang J, Tuo X, Fu Z, Huang H, Deng GJ. Org. Biomol. Chem. 2020; 18: 3234
  • 91 Chen Q, Xie R, Jia H, Sun J, Lu G, Jiang H, Zhang M. J. Org. Chem. 2020; 85: 5629