Synlett 2021; 32(02): 109-118
DOI: 10.1055/s-0040-1707211
account
© Georg Thieme Verlag Stuttgart · New York

[(bpy)CuSCF3]: A Practical and Efficient Reagent for the Construction of C–SCF3 Bonds

Yangjie Huang
a   Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University, Fuzhou, 350108, P. R. of China
,
Mengjia Zhang
b   Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Qi Lin
a   Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University, Fuzhou, 350108, P. R. of China
,
Zhiqiang Weng
a   Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University, Fuzhou, 350108, P. R. of China
b   Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (grant numbers 21372044 and 21772022), Fuzhou University, and Minjiang University.
Further Information

Publication History

Received: 11 June 2020

Accepted: 22 June 2020

Publication Date:
22 July 2020 (online)


Abstract

In this account, we summarize recent work on the direct introduction of the SCF3 group by using [(bpy)CuSCF3] as trifluoromethylthiolating reagent. A number of efficient and convenient strategies have been disclosed for the synthesis of trifluoromethylthiolated compounds, including trifluoromethylthiolation of aryl, alkenyl, and alkyl halides, and arylboronic acids. These reactions afford various trifluoromethyl sulfides in good yields.

1 Introduction

2 Synthesis of [(bpy)CuSCF3]

3 Trifluoromethylthiolation of Aryl Halides

4 Trifluoromethylthiolation of Alkenyl Halides

5 Trifluoromethylthiolation of Alkyl Halides

6 Miscellaneous

7 Conclusion

 
  • References

  • 1 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 2 Organofluorine Chemistry . Uneyama K. Wiley; Weinheim: 2006
  • 3 Grushin VV. Acc. Chem. Res. 2010; 43: 160
  • 4 Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
  • 5 Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
  • 6 Barata-Vallejo S, Bonesi SM, Postigo A. RSC Adv. 2015; 5: 62498
  • 7 Landelle G, Bergeron M, Turcotte-Savard M.-O, Paquin J.-F. Chem. Soc. Rev. 2011; 40: 2867
  • 8 Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
  • 9 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
  • 10 Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
  • 11 Zhang K, Xu X, Qing F. Youji Huaxue 2015; 35: 556
  • 12 Zheng H, Huang Y, Weng Z. Tetrahedron Lett. 2016; 57: 1397
  • 13 Zhang P, Lu L, Shen Q. Huaxue Xuebao 2017; 75: 744
  • 14 Barthelemy A.-L, Magnier E, Dagousset G. Synthesis 2018; 50: 4765
  • 15 Lin Y.-M, Jiang LQ, Yi W.-B. Asian J. Org. Chem. 2019; 8: 627
  • 16 Yin G, Kalvet I, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 6809
  • 17 Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
  • 18 Yin G, Kalvet I, Englert U, Schoenebeck F. J. Am. Chem. Soc. 2015; 137: 4164
  • 19 Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
  • 20 Xu J, Mu X, Chen P, Ye J, Liu G. Org. Lett. 2014; 16: 3942
  • 21 Glenadel Q, Alazet S, Tlili A, Billard T. Chem. Eur. J. 2015; 21: 14694
  • 22 Arimori S, Takada M, Shibata N. Dalton Trans. 2015; 19456
  • 23 Chen C, Xie Y, Chu L, Wang R.-W, Zhang X, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
  • 24 Shao X, Wang X, Yang T, Lu L, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 3457
  • 25 Pluta R, Nikolaienko P, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 1650
  • 26 Kang K, Xu C, Shen Q. Org. Chem. Front. 2014; 1: 294
  • 27 Adams DJ, Goddard A, Clark JH, Macquarrie DJ. Chem. Commun. 2000; 987
  • 28 Matheis C, Wagner V, Goossen LJ. Chem. Eur. J. 2016; 22: 79
  • 29 Danoun G, Bayarmagnai B, Gruenberg MF, Gooßen LJ. Chem. Sci. 2014; 5: 1312
  • 30 Koziakov D, Majek M, Jacobi von Wangelin A. Eur. J. Org. Chem. 2017; 6722
  • 31 Bertoli G, Exner B, Evers MV, Tschulik K, Gooßen LJ. J. Fluorine Chem. 2018; 210: 132
  • 32 Xu C, Ma B, Shen Q. Angew. Chem. Int. Ed. 2014; 53: 9316
  • 33 Zhang P, Li M, Xue X.-S, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q. J. Org. Chem. 2016; 81: 7486
  • 34 Bonazaba Milandou LJ. C, Carreyre H, Alazet S, Greco G, Martin-Mingot A, Nkounkou Loumpangou C, Ouamba J.-M, Bouazza F, Billard T, Thibaudeau S. Angew. Chem. Int. Ed. 2017; 56: 169
  • 35 Liu J, Zhao X, Jiang L, Yi W. Adv. Synth. Catal. 2018; 360: 4012
  • 36 Burton DJ, Hartgraves GA. J. Fluorine Chem. 2007; 128: 1198
  • 37 Man EH, Coffman DD, Muetterties EL. J. Am. Chem. Soc. 1959; 81: 3575
  • 38 Emeléus HJ, MacDuffie DE. J. Chem. Soc. 1961; 2597
  • 39 Munavalli S, Hassner A, Rossman DI, Singh S, Rohrbaugh DK, Ferguson CP. J. Fluorine Chem. 1995; 73: 7
  • 40 Tyrra W, Naumann D, Hoge B, Yagupolskii YL. J. Fluorine Chem. 2003; 119: 101
  • 41 Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
  • 42 Zhang Y, Gan K, Weng Z. Org. Process Res. Dev. 2016; 20: 799
  • 43 Zhang M, Weng Z. Adv. Synth. Catal. 2016; 358: 386
  • 44 Luo B, Zhang Y, You Y, Weng Z. Org. Biomol. Chem. 2016; 14: 8615
  • 45 Zhang Y, Yang D.-Y, Weng Z. Tetrahedron 2017; 73: 3853
  • 46 Liu J, Xu X, Chen Z, Qing F. Angew. Chem. Int. Ed. 2015; 54: 897
  • 47 Glenadel Q, Tlili A, Billard T. Eur. J. Org. Chem. 2016; 1955
  • 48 Scattolin T, Deckers K, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 221
  • 49 Zhang M, Chen S, Weng Z. Org. Lett. 2018; 20: 481
  • 50 Zhang C.-P, Vicic DA. Chem. Asian J. 2012; 7: 1756
  • 51 Huang Y, Ding J, Wu C, Zheng H, Weng Z. J. Org. Chem. 2015; 80: 2912
  • 52 Zhu P, He X, Chen X, You Y, Yuan Y, Weng Z. Tetrahedron 2014; 70: 672
  • 53 Weng Z, Chen Z, Hou C, Lin X, Huang Y. Synthesis 2015; 47: 969
  • 54 Zhang M, Weng Z. Org. Lett. 2019; 21: 5838
  • 55 Kong D, Jiang Z, Xin S, Bai Z, Yuan Y, Weng Z. Tetrahedron 2013; 69: 6046
  • 56 Tan J, Zhang G, Ou Y, Yuan Y, Weng Z. Chin. J. Chem. 2013; 31: 921
  • 57 Lin Q, Chen L, Huang Y, Rong M, Yuan Y, Weng Z. Org. Biomol. Chem. 2014; 12: 5500
  • 58 Huang Y, He X, Lin X, Rong M, Weng Z. Org. Lett. 2014; 16: 3284
  • 59 Huang Y, He X, Li H, Weng Z. Eur. J. Org. Chem. 2014; 7324
  • 60 Zhao M, Zhao X, Zheng P, Tian Y. J. Fluorine Chem. 2017; 194: 73
  • 61 Zhang M, Chen J, Chen Z, Weng Z. Tetrahedron 2016; 72: 3525
  • 62 Zhang B.-S, Gao L.-Y, Zhang Z, Wen Y.-H, Liang Y.-M. Chem. Commun. 2018; 54: 1185
  • 63 Gockel SN, Buchanan TL, Hull KL. J. Am. Chem. Soc. 2018; 140: 58
  • 64 Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136