Synthesis 2020; 52(20): 3029-3035
DOI: 10.1055/s-0040-1707193
paper
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Synthesis of Diastereomerically Pure 3-Sulfonyl­azetidin-2-ones via Microwave-Assisted Tandem Wolff Rearrangement–Staudinger Cycloaddition

Judith Synofzik
,
Olga Bakulina
,
Olga Balabas
,
Dmitry Dar’in
,
Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation   Email: m.krasavin@spbu.ru
› Author Affiliations
This research was supported by the Russian Foundation for Basic Research (grant no. 20-03-00922).
Further Information

Publication History

Received: 09 May 2020

Accepted after revision: 04 June 2020

Publication Date:
21 July 2020 (online)


Abstract

A wide range of α-diazo-β-ketosulfones have been applied to thermally promoted tandem Wolff rearrangement – Staudinger [2+2] cycloaddition with imines to give polysubstituted β-lactam sulfones. Dia­stereomerically pure syn-diastereomers were obtained in good yields and the relative stereochemistry was confirmed by single-crystal X-ray crystallography. These findings significantly expand the scope of this transformation, in contrast to substantial limitations reported previously. Moreover, this methodology enables flexible exploration of new substitution patterns around the privileged β-lactam core for drug design and optimization.

Supporting Information

 
  • References

    • 1a Fernandes R, Amador P, Prudencio C. Rev. Med. Microbiol. 2013; 24: 7
    • 1b McGeary RP, Tan DT. C, Schenk G. Future Med. Chem. 2017; 9: 673
  • 2 Veinberg G, Potorocina I, Vorona M. Curr. Med. Chem. 2013; 21: 393
  • 3 Fu N, Tidwell TT. Tetrahedron 2008; 64: 10465
  • 4 Kirmse W. Eur. J. Org. Chem. 2002; 2193
  • 6 Bubyrev A, Dar’in D, Kantin G, Kantin M. Eur. J. Org. Chem. 2020; 27: 4112
  • 7 Dar’in D, Kantin G, Bakulina O, Krasavin M. Synthesis 2020; DOI: in press; 10.1055/s-0040-1707525.
  • 8 Safrygin A, Dar’in D, Kantin G, Krasavin M. Eur. J. Org. Chem. 2019; 4721
    • 9a Reddy BV. S, Karthik G, Rajasekaran T, Antony A, Sridhar B. Tetrahedron Lett. 2012; 53: 2396
    • 9b Mandler MD, Truong PM, Zavalij PY, Doyle MP. Org. Lett. 2014; 16: 740
    • 9c Chen L, Wang K, Shao Y, Sun J. Org. Lett. 2019; 21: 3804
    • 9d Chen L, Zhang L, Shao Y, Xu G, Zhang X, Tang S, Sun J. Org. Lett. 2019; 21: 4124
    • 10a Egorova KS, Ananikov VP. Organometallics 2017; 36: 4071
    • 10b Busacca CA, Fandrick DR, Song JJ, Senanayake CH. In Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industry Perspective . Crawley ML, Trost BM. John Wiley & Sons; New York: 2012. Chap. 1
  • 11 Synofzik J, Dar’in D, Novikov MS, Kantin G, Bakulina O, Krasavin M. J. Org. Chem. 2019; 84: 12101
  • 12 Synofzik J, Bakulina O, Dar’in D, Kantin G, Krasavin M. Synlett 2020; DOI: in press; 10.1055/s-0040-1707811.
  • 13 Huang Z, Wang C, Tokunaga E, Sumii Y, Shibata N. Org. Lett. 2015; 17: 5610
  • 14 CCDC 1995210 (3c), 1995205 (3m) and 1995211 (3n) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 16 Setti EL, Davis D, Chung T, McCarter J. Bioorg. Med. Chem. Lett. 2003; 13: 2051
  • 17 Chen M, Liu F, Dong G. Angew. Chem. Int. Ed. 2018; 57: 3815