Synlett 2021; 32(01): 69-74
DOI: 10.1055/s-0040-1707192
letter
© Georg Thieme Verlag Stuttgart · New York

Cascade Access to Carboline Carboxylates from Indolyl Ketoximes and Acrylates via Palladium-Catalyzed C–H Bond Alkenylation/Annulation

Xiao-Pan Fu
a   Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Lu Chen
a   Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Gao-Rong Wu
a   Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Hong-Wei Liu
a   Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
,
Cheng-Cai Xia
b   Pharmacy College, Shandong First Medical University and Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P. R. of China   Email: xiachc@163.com
,
Ya-Fei Ji
a   Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: jyf@ecust.edu.cn
› Author Affiliations
We gratefully thank the National Natural Science Foundation of China (Project No. 21676088) for financial support.
Further Information

Publication History

Received: 13 May 2020

Accepted after revision: 11 June 2020

Publication Date:
15 July 2020 (online)


Abstract

An efficient palladium-catalyzed C–H bond alkenylation/annulation strategy to access carboline carboxylates from indolyl ketoximes and acrylates through C–C/C–N bond formation is reported. Indolyl ketoximes not only direct ortho-olefination with acrylates, but also undergo an intramolecular N–O bond cleavage/traceless annulation to construct carboline carboxylates straightforwardly in this concise method.

Supporting Information

 
  • References and Notes

    • 1a Kim J.-S, Shin-ya K, Furihata K, Hayakawa Y, Seto H. Tetrahedron Lett. 1997; 38: 3431
    • 1b Panarese JD, Waters SP. Org. Lett. 2010; 12: 4086
    • 1c Jaeger RJ. R, Lamshöft M, Gottfried S, Spiteller M, Spiteller P. J. Nat. Prod. 2013; 76: 127
    • 1d Singh D, Hazra CK, Malakar CC, Pandey SK, Kaith BS, Singh V. ChemistrySelect 2018; 3: 4859
    • 2a Wolf G, Zymalkowski F. Arch. Pharm. (Weinheim, Ger.) 1976; 309: 279
    • 2b Love BE. Org. Prep. Proced. Int. 1996; 28: 1
    • 2c Zhang H, Larock RC. J. Org. Chem. 2002; 67: 9318
    • 2d Litvinov VP, Dotsenko VV, Krivokolysko SG. Adv. Heterocycl. Chem. 2007; 93: 117
    • 3a Song Y, Wang J, Teng SF, Kesuma D, Deng Y, Duan J, Wang JH, Qi RZ, Sim MM. Bioorg. Med. Chem. Lett. 2002; 12: 1129
    • 3b Zhang G, Cao R, Guo L, Ma Q, Fan W, Chen X, Li J, Shao G, Qiu L, Ren Z. Eur. J. Med. Chem. 2013; 65: 21
    • 3c Hung T, Dang T, Janke J, Villinger A, Langer P. Org. Biomol. Chem. 2015; 13: 1375
    • 4a Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 4b Godula K, Sames D. Science 2006; 312: 67
    • 4c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 4d Zhou M, Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875
    • 4e Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 4f Ackermann L. Acc. Chem. Res. 2013; 47: 281
    • 5a Graczyk K, Ma W, Ackermann L. Org. Lett. 2012; 14: 4110
    • 5b Padala K, Pimparkar S, Madasamy P, Jeganmohan M. Chem. Commun. 2012; 48: 7140
    • 5c Hu X.-H, Zhang J, Yang X.-F, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 3169
    • 5d Gao S, Wu Z, Wu F, Lin A, Yao H. Adv. Synth. Catal. 2016; 358: 4129
    • 6a Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908 ; corrigendum: J. Am. Chem. Soc. 2012, 134, 18148
    • 6b Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc. 2011; 133: 2350
    • 6c Deb A, Bag S, Kancherla R, Maiti D. J. Am. Chem. Soc. 2014; 136: 13602
    • 6d Hyster TK, Dalton DM, Rovis T. Chem. Sci. 2015; 6: 254
    • 6e Semakul N, Jackson KE, Paton RS, Rovis T. Chem. Sci. 2017; 8: 1015
    • 6f Jaiswal Y, Kumar Y, Kumar A. J. Org. Chem. 2018; 83: 1223
    • 7a Shi B.-F, Zhang Y.-H, Lam J.-K, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 460
    • 7b Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 6169
    • 7c Engle KM, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 14137
    • 7d Simonetti M, Larrosa I. Nat. Chem. 2016; 8: 1086
    • 8a García-Rubia A, Urones B, Gómez Arrayas R, Carretero JC. Angew. Chem. Int. Ed. 2011; 50: 10927
    • 8b Urones B, Gómez Arrayas R, Carretero JC. Org. Lett. 2013; 15: 1120
    • 8c Cong X, You J, Gao G, Lan J. Chem. Commun. 2013; 49: 662
    • 8d Yang D, Mao S, Gao YR, Guo D.-D, Guo S.-H, Li B, Wang Y.-Q. RSC Adv. 2015; 5: 23727
    • 9a Yu M, Xie YJ, Xie CS, Zhang Y. Org. Lett. 2012; 14: 2164
    • 9b Li G, Leow D, Wan L, Yu JQ. Angew. Chem. Int. Ed. 2013; 52: 1245
    • 9c Unoh Y, Hirano K, Satoh T, Miura M. Org. Lett. 2015; 17: 704
    • 9d Knight BJ, Rothbaum JO, Ferreira EM. Chem. Sci. 2016; 7: 1982
    • 10a Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 10b Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
    • 10c Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
    • 10d Neufeldt SR, Sanford MS. Org. Lett. 2010; 12: 532
    • 10e Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3926
    • 10f Sun C.-L, Liu N, Li B.-J, Yu D.-G, Wang Y, Shi Z.-J. Org. Lett. 2010; 12: 184
    • 11a Tsai AS, Brasse M, Bergman RG, Ellman JA. Org. Lett. 2011; 13: 540
    • 11b Xu Z, Xiang B, Sun P. Eur. J. Org. Chem. 2012; 3069
    • 11c Manikandan R, Madasamy P, Jeganmohan M. ACS Catal. 2016; 6: 230
    • 12a Guimond N, Gorelsky S, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 12b Shi Z, Koester D, Boultadakis-Arapinis M, Glorius F. J. Am. Chem. Soc. 2013; 135: 12204
    • 12c Zhao D, Lied F, Glorius F. Chem. Sci. 2014; 5: 2869
    • 12d Chu H, Sun S, Yu J.-T, Cheng J. Chem. Commun. 2015; 51: 13327
    • 12e Gong W, Zhou Z, Shi J, Wu B, Huang B, Yi W. Org. Lett. 2018; 20: 182
    • 13a Fu X, Yang J, Deng K, Shao L, Xia C, Ji Y. Org. Lett. 2019; 21: 3505
    • 13b Fu X.-P, Tang S.-B, Yang J.-Y, Zhang L.-L, Xia C.-C, Ji Y.-F. Eur. J. Org. Chem. 2019; 5974
  • 14 Li W, Zhao Y, Mai S, Song Q. Org. Lett. 2018; 20: 1162
    • 16a Hosokawa T, Shimo N, Maeda K, Sonoda A, Murahashi S.-I. Tetrahedron Lett. 1976; 17: 383
    • 16b Hironori T. Koichi N. 1999; 28: 45
    • 16c Kitamura M, Narasaka K. Chem. Rec. 2002; 2: 268
    • 16d Hironori T. Kitamura M., Koichi N. 2002; 75: 1451
    • 16e Gerfaud T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2009; 48: 572
    • 16f Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
    • 16g Huang H, Ji X, Wu W, Jiang H. Chem. Soc. Rev. 2015; 44: 1155
  • 17 CCDC 1974231 contains the supplementary crystallographic data for compound 3i. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 18 Carboline Carboxylates 3: General Procedure A sealable glass tube was charged with a mixture of substrate 1 (0.3 mmol), methyl acrylate (2a; 1.5 mmol), Pd(TFA)2 (10 mol %), Ag2O (2.0 equiv), and N-Ac-Val-OH (1.0 equiv) in 1:3 AcOH–DCE (3.0 mL) and the mixture was stirred under air at 90 °C for 24 h. Upon completion of the reaction, the solution was concentrated in vacuo. H2O (30 mL) and CH2Cl2 (15 mL) were added, and the aqueous layer was separated and extracted with CH2Cl2 (2 × 15 mL). The combined organic layer was dried (MgSO4) and concentrated in vacuo to provide a crude product that was further purified by column chromatography [silica gel, PE–EtAc (10:1)]. Methyl 1-Methyl-5-phenyl-5H-pyrido[4,3-b]indole-3-carboxylate (3a) White solid; yield: 59.7 mg (84%); mp 191–192 °C. 1H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 8.0 Hz, 1 H), 8.07 (s, 1 H), 7.68 (t, J = 7.2 Hz, 2 H), 7.61–7.57 (m, 2 H), 7.57–7.47 (m, 4 H), 4.05 (s, 3 H), 3.34 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.5, 153.6, 145.1, 142.5, 142.1, 135.9, 130.3 (2 C), 128.8, 127.6, 127.2 (2 C), 123.0, 121.9, 121.8, 120.3, 110.6, 106.2, 53.0, 24.1. HRMS (EI): m/z [M+] calcd for C20H16N2O2: 316.1212; found: 316.1213.