Synlett 2020; 31(14): 1400-1403
DOI: 10.1055/s-0040-1707162
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Direct Cross-Coupling of Ethers and Thioether with Alcohols for the Synthesis of Mixed Acetals

Wei Han
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
b   Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
,
Lu Cheng
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
,
Hongyuan Zhao
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road NO.1, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
› Author Affiliations
This work was sponsored by the Natural Science Foundation of China (21776139, 21302099), the Natural Science Foundation of Jiangsu Province (BK20161553), the Natural Science Foundation of Jiangsu Provincial Colleges and Universities (16KJB150019), the China Scholarship Council, the Qing Lan project of Nanjing Normal University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Further Information

Publication History

Received: 13 April 2020

Accepted after revision: 28 May 2020

Publication Date:
23 June 2020 (online)


§ These authors contributed equally to this work.

Abstract

An iron-catalyzed direct O-alkylation of alcohols via α-C(sp3)–H activation of ethers and a thioether has been established that tolerates cyclic and acyclic ethers and alcohols containing aromatic N-heterocyclic moieties, providing an efficient and green method for the synthesis of mixed acetals with good to excellent yields. The robustness of this protocol is demonstrated by the late-stage oxidation of a structurally complex natural product.

Supporting Information

 
  • References and Notes

    • 1a Fischer J, Ganellin CR. Analogue-Based Drug Discovery . Wiley; Weinheim: 2006
    • 1b Lliossas JB, Sato S, Bueno RC, Graupera E. European patent EP 2050784, 2009
    • 1c Dubois J.-L, Chornet SI, Canos AC, Velty AI. L. European patent EP 2094820, 2009
    • 1d Burdock GA, Fenaroli G. Fenaroli’s Handbook of Flavor Ingredients . CRC Press; Boca Raton: 2004
    • 1e Surburg H, Panten J. Common Fragrance and Flavor Materials: Preparation, Properties and Uses. Wiley–VCH; Weinheim: 2006
    • 1f Sivik MR. United States Patent US 6395695 B1, 2002
    • 1g Wuts PG. M, Greene TW. Greene’s Protective Groups in Organic Synthesis, 4th ed. Wiley–VCH; Weinheim: 2006
    • 1h Ley SV, Polara A. J. Org. Chem. 2007; 72: 5943
    • 2a Isidor JL, Carlson RM. J. Org. Chem. 1973; 38: 554
    • 2b Boeckman RK, Flann CJ. Tetrahedron Lett. 1983; 24: 4923
    • 2c Overman LE, Thompson AS. J. Am. Chem. Soc. 1988; 110: 2248
    • 2d Baeckström P, Li L. Tetrahedron 1991; 47: 6521
    • 2e Kitahara T, Warita T, Abe M, Seya M, Takagi Y, More K. Agric. Biol. Chem. 1991; 55: 1013
    • 2f Panda J, Ghosh S. Tetrahedron Lett. 1999; 40: 6693
    • 2g Bi L, Zhao M, Wang C, Peng S. Eur. J. Org. Chem. 2000; 2669
    • 2h Nomura M, Shuto S, Matsuda A. Bioorg. Med. Chem. 2003; 11: 2453
    • 2i Ledneczki I, Molnar A. Synth. Commun. 2004; 34: 3683
    • 2j Fujioka H, Okitsu T, Sawama Y, Murata N, Li R, Kita Y. J. Am. Chem. Soc. 2006; 128: 5930
    • 2k Fujioka H, Okitsu T, Ohnaka T, Li R, Kubo O, Okamoto K, Sawama Y, Kita Y. J. Org. Chem. 2007; 72: 7898
    • 2l Fujioka H, Okitsu T, Ohnaka T, Sawama Y, Kubo O, Okamoto K, Kita Y. Adv. Synth. Catal. 2007; 349: 636
    • 2m Krompiec S, Penczek R, Penkala M, Krompiec M, Rzepa J, Matlengiewicz M, Jaworska J, Baj S. J. Mol. Catal. A: Chem. 2008; 290: 15
    • 3a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 3b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 3c Yeungand CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 3d Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3e Phillips AM. F, Pombeiro AJ. L. ChemCatChem 2018; 10: 3354
    • 3f Lv L, Li Z. Top. Curr. Chem. 2016; 374: 38
    • 3g Jia F, Li Z. Org. Chem. Front. 2014; 1: 194
    • 3h Krylov IB, Vil’ VA, Terent’ev AO. Beilstein J. Org. Chem. 2015; 11: 92
    • 3i Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
    • 3j Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 4a Kruse CG, Broekhof NL. J. M, van der Gen A. Tetrahedron Lett. 1976; 1725
    • 4b Jung JC, Choi HC, Kim YH. Tetrahedron Lett. 1993; 34: 3581
  • 5 Maione AM, Romeo A. Synthesis 1987; 250
  • 6 Yu B, Hui Y. Synth. Commun. 1995; 25: 2037
  • 7 Baati R, Valleix A, Mioskowski C, Barma DK, Falck JR. Org. Lett. 2000; 2: 485
  • 8 Ochiai R, Sueda T. Tetrahedron Lett. 2004; 45: 3557
  • 9 Falck JR, Li DR, Bejot R, Mioskowski C. Tetrahedron Lett. 2006; 47: 5111
  • 10 Das B, Krishnaiah M, Reddy VS, Laxminarayana K. Helv. Chim. Acta 2007; 90: 2163
  • 11 Barks JM, Gilbert BC, Parsons AF, Upeandran B. Tetrahedron Lett. 2000; 41: 6249
  • 12 Wang M.-K, Zhou Z, Tang R.-Y, Zhang X.-G, Deng C. Synlett 2013; 24: 0737
  • 13 Durán-Peña MJ, Botubol-Ares MJ, Hanson JR, Hernández-Galán R, Collado IG. Eur. J. Org. Chem. 2015; 6333
  • 14 Hu P, Tan M, Cheng L, Zhao H, Gu W.-J, Han W. Nat. Commun. 2019; 10: 2425
  • 15 Liu B, Jin F, Wang T, Yuan X, Han W. Angew. Chem. Int. Ed. 2017; 56: 12712
  • 16 The precise role of PMHS in the reaction remains to be elucidated. However, on the basis of previous studies, a possible explanation is that iron hydride species ([Fe]-H) can be generated from the reaction of iron salt and PMHS (see our previous study15), and then reacts with alcohol ROH to give an important intermediate [Fe]-OR. See also: Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler H.-J, Baumann W, Junge H, Beller M. Angew. Chem. Int. Ed. 2013; 52: 14162
    • 17a Malatesta V, Ingold KU. J. Am. Chem. Soc. 1981; 103: 609
    • 17b Zhao J, Fang H, Zhou W, Han J, Pan Y. J. Org. Chem. 2014; 79: 3847
  • 18 Wang D, Lu B, Song Y.-L, Su H.-M, Shen Q. Tetrahedron Lett. 2019; 60: 150969
  • 19 Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505
  • 20 Guo S, Yuan Y, Xiang J. Org. Lett. 2013; 15: 4654
  • 21 Lan Y, Fan P, Liu X.-W, Meng F.-F, Ahmad T, Xu Y.-H, Loh T.-P. Chem. Commun. 2017; 53: 12353
  • 22 Typical procedure for the synthesis of 3ba: A 25 mL flask equipped with a magnetic stir bar was charged with FeBr2 (5.5 mg, 0.025 mmol), 2-(4-methoxyphenyl)ethanol 1b (39.2 mg, 0.25 mmol), PMHS (170 μL, 0.75 mmol), DTBP (94 μL, 0.5 mmol) and THF (2 mL) before standard cycles evacuation and backfilling with dry N2. The mixture was then stirred at 80 °C for 3 h. After cooling to room temperature, the reaction mixture was diluted with water (15 mL) and extracted with diethyl ether (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The residue was purified by column chromatography on silica gel (petroleum ether/diethyl ether = 50:1) to afford 3ba (49.0 mg, 90%) as a colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 7.18 (dt, J 1 = 8.73 Hz, J 2 = 2.54 Hz, 2 H), 6.87 (dt, J 1 = 8.73 Hz, J 2 = 2.54 Hz, 2 H), 5.15 (q, J = 2.07 Hz, 1 H), 3.90–3.82 (m, 3 H), 3.80 (s, 3 H), 3.62 (dt, J 1 = 9.72 Hz, J 2 = 4.84 Hz, 1 H), 2.86 (t, J = 7.23 Hz, 2 H), 2.03–1.79 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 157.9, 131.0, 129.7, 113.6, 103.7, 68.1, 66.7, 55.1, 35.3, 32.2, 23.4.