Synlett 2020; 31(15): 1448-1463
DOI: 10.1055/s-0040-1707125
account
© Georg Thieme Verlag Stuttgart · New York

No, Not That Way, the Other Way: Creating Active Sites in Self-Assembled Host Molecules

RJH would like to thank the National Science Foundation, Division of Chemistry (CHE-1151773 and 1708019) for funding of all these projects, as well as the UC Riverside Center for Catalysis.
Further Information

Publication History

Received: 13 April 2020

Accepted after revision: 24 April 2020

Publication Date:
28 May 2020 (online)


Dedicated to Prof. Julius Rebek Jr. on the occasion of his 75th birthday

Abstract

This Account describes our efforts over the last decade to synthesize self-assembled metal–ligand cage complexes that display reactive functional groups on their interiors. This journey has taken us down a variety of research avenues, including studying the mechanism of reversible self-assembly, analyzing ligand self-sorting properties, post-assembly reactivity, molecular recognition, and binding studies, and finally reactivity and catalysis. Each of these individual topics are discussed here, as are the lessons learned along the way and the future research outlook. These self-assembled hosts are the closest mimics of enzymes to date, as they are capable of size- and shape-selective molecular recognition, substrate activation and turnover, as well as showing less common ‘biomimetic’ properties such as the ability to employ cofactors in reactivity, and alter the prevailing mechanism of the catalyzed reactions.

1 Introduction

2 Paddlewheels and Self-Sorting Behavior

3 First-Row Transition-Metal-Mediated Assembly: Sorting and Stereochemical Control

4 Post-Assembly Reactivity

5 Molecular Recognition and Catalysis

6 Conclusions and Outlook

 
  • References

  • 1 Hof F, Craig SL, Nuckolls C, Rebek JJr. Angew. Chem. Int. Ed. 2002; 41: 1488
  • 2 Diederich F. Angew. Chem., Int. Ed. Engl. 1988; 27: 362
  • 3 Murakami Y, Kikuchi J.-I, Hisaeda Y, Hayashida O. Chem. Rev. 1996; 96: 721
  • 4 Breslow R. Acc. Chem. Res. 1995; 28: 146
  • 5 Cram DJ. Angew. Chem., Int. Ed. Engl. 1988; 27: 1009
  • 6 Kang JM, Rebek JJr. Nature 1997; 385: 50
  • 7 Jordan JH, Gibb BC. Chem. Soc. Rev. 2015; 44: 547
  • 8 Hooley RJ, Rebek JJr. Chem. Biol. 2009; 16: 255
  • 9 Gissot A, Rebek JJr. J. Am. Chem. Soc. 2004; 126: 7424
  • 10 Hooley RJ, Restorp P, Iwasawa T, Rebek JJr. J. Am. Chem. Soc. 2007; 129: 15639
  • 11 Hooley RJ, Iwasawa T, Rebek JJr. J. Am. Chem. Soc. 2007; 129: 15330
    • 12a Caulder DL, Raymond KN. Acc. Chem. Res. 1999; 32: 975
    • 12b Caulder DL, Brückner C, Powers RE, König S, Parac TN, Leary JA, Raymond KN. J. Am. Chem. Soc. 2001; 123: 8923
    • 13a Fujita M, Tominaga M, Hori A, Therrien B. Acc. Chem. Res. 2005; 38: 371
    • 13b Fujita M, Umemoto K, Yoshizawa M, Fujita N, Kusukawa T, Biradha K. Chem. Commun. 2001; 509
    • 14a Sato S, Ishido Y, Fujita M. J. Am. Chem. Soc. 2009; 131: 6064
    • 14b Suzuki K, Kawano M, Sato S, Fujita M. J. Am. Chem. Soc. 2007; 129: 10652
    • 14c Fujita D, Suzuki K, Sato S, Yagi-Utsumi M, Yamaguchi Y, Mizuno N, Kumasaka T, Takata M, Noda M, Uchiyama S, Kato K, Fujita M. Nat. Commun. 2012; 3: 2093
    • 14d Sun Q.-F, Murase T, Sato S, Fujita M. Angew. Chem. Int. Ed. 2011; 50: 10318
    • 15a Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M. Science 2006; 313: 1273
    • 15b Suzuki K, Iida J, Sato S, Kawano M, Fujita M. Angew. Chem. Int. Ed. 2008; 47: 5780
    • 16a Yoshizawa M, Tamura M, Fujita M. Science 2006; 312: 251
    • 16b Ueda Y, Ito H, Fujita D, Fujita M. J. Am. Chem. Soc. 2017; 139: 6090
  • 17 Wang, Q.-Q.; Gonell, S.; Leenders, S. H. A. M.; Dürr, M.; Ivanović-Burmazović, I.; Reek, J. N. H. Nat. Chem.; 2016, 8: 2, 25.
  • 18 Bolliger JL, Belenguer AM, Nitschke JR. Angew. Chem. Int. Ed. 2013; 52: 7958
  • 19 Yue NL. S, Eisler DJ, Jennings MC, Puddephatt RJ. Inorg. Chem. 2004; 43: 7671
    • 20a Lewis JE. M, Gavey EL, Cameron SA, Crowley JD. Chem. Sci. 2012; 3: 778
    • 20b Preston D, Lewis JE. M, Crowley JD. J. Am. Chem. Soc. 2017; 139: 2379
  • 21 Clever GH, Punt P. Acc. Chem. Res. 2017; 50: 2233
  • 22 Liao P, Langloss BW, Johnson AM, Knudsen ER, Tham FS, Julian RR, Hooley RJ. Chem. Commun. 2010; 46: 4932
  • 23 Martí-Centelles V, Lawrence AL, Lusby PJ. J. Am. Chem. Soc. 2018; 140: 2862
  • 24 Johnson AM, Moshe O, Gamboa AS, Langloss BW, Limtiaco JF. K, Larive CK, Hooley RJ. Inorg. Chem. 2011; 50: 9430
  • 25 Johnson AM, Hooley RJ. Inorg. Chem. 2011; 50: 4671
  • 26 Young TA, Martí-Centelles V, Wang J, Lusby PJ, Duarte F. J. Am. Chem. Soc. 2020; 142: 1300
  • 27 August DP, Nichol GS, Lusby PJ. Angew. Chem. Int. Ed. 2012; 55: 15022
    • 28a Freye S, Hey J, Torras-Galán A, Stalke D, Herbst-Irmer R, John M, Clever GH. Angew. Chem. Int. Ed. 2012; 51: 2191
    • 28b Frank M, Ahrens J, Bejenke I, Krick M, Schwarzer D, Clever GH. J. Am. Chem. Soc. 2016; 138: 8279
  • 29 Johnson AM, Young MC, Zhang X, Julian RR, Hooley RJ. J. Am. Chem. Soc. 2013; 135: 17723
  • 30 Johnson AM, Wiley CA, Young MC, Zhang X, Lyon Y, Julian RR, Hooley RJ. Angew. Chem. Int. Ed. 2015; 54: 5641
  • 31 Liu C.-L, Zhang R.-L, Lin C.-S, Zhou L.-P, Cai L.-X, Kong J.-T, Yang S.-Q, Han K.-L, Sun Q.-F. J. Am. Chem. Soc. 2017; 139: 12474
    • 32a Jing X, He C, Zhao L, Duan C. Acc. Chem. Res. 2019; 52: 100
    • 32b Li X.-Z, Zhou L.-P, Yan L.-L, Yuan D.-Q, Lin C.-S, Sun Q.-F. J. Am. Chem. Soc. 2017; 139: 8237
  • 33 Jing X, He C, Yang Y, Duan C. J. Am. Chem. Soc. 2017; 139: 3967
    • 34a Hong CM, Bergman RG, Raymond KN, Toste FD. Acc. Chem. Res. 2018; 51: 2447
    • 34b Brown CJ, Toste FD, Bergman RG, Raymond KN. Chem. Rev. 2015; 115: 3012
  • 35 Smulders MM. J, Riddell IA, Browne C, Nitschke JR. Chem. Soc. Rev. 2013; 42: 1728
  • 36 Hannon MJ, Painting CL, Jackson A, Hamblin J, Errington W. Chem. Commun. 1997; 1807
  • 37 McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR. Chem. Rev. 2015; 115: 7729
  • 38 Mal P, Schultz D, Beyeh K, Rissanen K, Nitschke JR. Angew. Chem. Int. Ed. 2008; 47: 8297
  • 39 Bilbeisi RA, Clegg JK, Elgrishi N, de Hatten X, Devillard M, Breiner B, Mal P, Nitschke JR. J. Am. Chem. Soc. 2012; 134: 5110
  • 40 Percástegui EG, Mosquera J, Ronson TK, Plajer AJ, Kieffer M, Nitschke JR. Chem. Sci. 2019; 10: 2006
  • 41 Castilla AM, Miller MA, Nitschke JR, Smulders MM. J. Angew. Chem. Int. Ed. 2016; 55: 10616
    • 42a Meng W, Clegg JK, Thoburn JD, Nitschke JR. J. Am. Chem. Soc. 2011; 133: 13652
    • 42b Ronson TK, Meng W, Nitschke JR. J. Am. Chem. Soc. 2017; 139: 9698
  • 43 Kieffer M, Pilgrim BS, Ronson TK, Roberts DA, Aleksanyan M, Nitschke JR. J. Am. Chem. Soc. 2016;  138: 6813
  • 44 Young MC, Johnson AM, Gamboa AS, Hooley RJ. Chem. Commun. 2013; 49: 1627
  • 45 Young MC, Johnson AM, Hooley RJ. Chem. Commun. 2014; 50: 1378
  • 46 Holloway LR, Young MC, Beran GJ. O, Hooley RJ. Chem. Sci. 2015; 6: 4801
  • 47 Wu A, Isaacs L. J. Am. Chem. Soc. 2003; 125: 4831
  • 48 Persch E, Dumele O, Diederich F. Angew. Chem. Int. Ed. 2015; 54: 3290
    • 49a Mukhopadhyay P, Wu A, Isaacs L. J. Org. Chem. 2004; 69: 6157
    • 49b Yamanaka M, Yamada Y, Sei Y, Yamaguchi K, Kobayashi K. J. Am. Chem. Soc. 2006; 128: 1531
    • 50a Sun Q.-F, Sato S, Fujita M. Angew. Chem. Int. Ed. 2014; 53: 13510
    • 50b Saha ML, Schmittel M. J. Am. Chem. Soc. 2013; 135: 17743
    • 50c Smulders MM. J, Jiménez A, Nitschke JR. Angew. Chem. Int. Ed. 2012; 51: 6681
    • 50d Saha ML, Pramanik S, Schmittel M. Chem. Commun. 2012; 48: 9459
    • 51a Hristova YR, Smulders MM. J, Clegg JK, Breiner B, Nitschke JR. Chem. Sci. 2011; 2: 638
    • 51b Wood CS, Ronson TK, Belenguer AM, Holstein JJ, Nitschke JR. Nat. Chem. 2015; 7: 354
    • 51c Neelakandan PP, Jiménez A, Thoburn JD, Nitschke JR. Angew. Chem. Int. Ed. 2015; 54: 14378
  • 52 Wiley CA, Holloway LR, Miller TF, Lyon Y, Julian RR, Hooley RJ. Inorg. Chem. 2016; 55: 9805
  • 53 McConnell AJ, Aitchison CM, Grommet AB, Nitschke JR. J. Am. Chem. Soc. 2017; 139: 6294
    • 54a McConnell AJ. Supramol. Chem. 2018; 30: 858
    • 54b Bilbeisi RA, Zarra S, Feltham HL. C, Jameson GN. L, Clegg JK, Brooker S, Nitschke JR. Chem. Eur. J. 2013; 19: 8058
  • 55 Miller TF, Holloway LR, Nye PP, Lyon Y, Beran GJ. O, Harman WH, Julian RR, Hooley RJ. Inorg. Chem. 2018; 57: 13386
  • 56 Young MC, Holloway LR, Johnson AM, Hooley RJ. Angew. Chem. Int. Ed. 2014; 53: 9832
  • 57 Tanabe KK, Cohen SM. Chem. Soc. Rev. 2011; 40: 498
  • 58 Roberts DA, Pilgrim BS, Cooper JD, Ronson TK, Zarra S, Nitschke JR. J. Am. Chem. Soc. 2015;  137: 10068
  • 59 Ronson TK, Pilgrim BS, Nitschke JR. J. Am. Chem. Soc. 2016; 138: 10417
  • 60 Roberts DA, Pilgrim BS, Sirvinskaite G, Ronson TK, Nitschke JR. J. Am. Chem. Soc. 2018; 140: 9616
  • 61 Holloway LR, McGarraugh HH, Young MC, Sontising W, Beran GJ. O, Hooley RJ. Chem. Sci. 2016; 7: 4423
  • 62 Holloway LR, Bogie PM, Lyon Y, Julian RR, Hooley RJ. Inorg. Chem. 2017; 56: 11435
  • 63 Bogie PM, Holloway LR, Lyon Y, Onishi NC, Beran GJ. O, Julian RR, Hooley RJ. Inorg. Chem. 2018; 57: 4155
  • 64 Roberts DA, Castilla AM, Ronson TK, Nitschke JR. J. Am. Chem. Soc. 2014; 136: 8201
  • 65 Chakrabarty R, Mukherjee PS, Stang PJ. Chem. Rev. 2011; 11: 6810
  • 66 Holloway LR, Bogie PM, Lyon Y, Ngai C, Miller TF, Julian RR, Hooley RJ. J. Am. Chem. Soc. 2018; 140: 8078
  • 67 Kirby AJ. Angew. Chem., Int. Ed. Engl. 1996; 35: 707
    • 68a Nakano S, Chadalavada DM, Bevilacqua PC. Science 2000; 287: 1493
    • 68b Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA. Nat. Struct. Mol. Biol. 2004; 11: 1101
  • 69 Bogie PM, Holloway LR, Ngai C, Miller TF, Grewal DK, Hooley RJ. Chem. Eur. J. 2019; 25: 10232
  • 71 Ngai C, Bogie PM, Holloway LR, Dietz PC, Mueller LJ, Hooley RJ. J. Org. Chem. 2019; 84: 12000
  • 72 Richter M. Nat. Prod. Rep. 2013; 30: 1324
    • 73a Zhang Q, Tiefenbacher K. Nat. Chem. 2015; 7: 197
    • 73b Zhang Q, Catti L, Pleiss J, Tiefenbacher K. J. Am. Chem. Soc. 2017; 139: 11482
    • 74a Pluth MD, Bergman RG, Raymond KN. Science 2007; 316: 85
    • 74b Cullen W, Misuraca MC, Hunter CA, Williams NH, Ward MD. Nat. Chem. 2016; 8: 231
    • 74c Cullen W, Metherell AJ, Wragg AB, Taylor CG. P, Williams NH, Ward MD. J. Am. Chem. Soc. 2018; 140: 2821