Synthesis 2020; 52(22): 3427-3438
DOI: 10.1055/s-0040-1707079
paper
© Georg Thieme Verlag Stuttgart · New York

N-Methylated 1,8-Diaminonaphthalenes as Bifunctional Nucleo­philes in Reactions with α,ω-Dihalogenoalkanes: A Facile Route to Heterocyclic and Double Proton Sponges

,
Department of Organic Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation   Email: vv_ozer2@sfedu.ru
,
› Author Affiliations
We gratefully acknowledge the Southern Federal University (grant-in-aid of publication activity) for financial support of this research.
Further Information

Publication History

Received: 17 April 2020

Accepted after revision: 03 June 2020

Publication Date:
14 July 2020 (online)


Abstract

The reaction of 1-dimethylamino-8-(methylamino)naphthalene with 1,3-dibromopropane chemoselectively leads to the product of N,N′-heterocyclization, while in the case of 1,4-dibromobutane and 1,2-bis(bromomethyl)benzene the process results in heterocyclization onto the same nitrogen atom with the formation of previously unknown 1-dimethylamino-8-pyrrolidino- and 1-dimethylamino-8-isoindolino-naphthalenes. The same reactions conducted without adding any auxiliary base lead to the formation of N,N′-linked double proton sponges as a new type of polynitrogen organic receptor. Proceeding as a sequence of quaternization–demethylation–cyclization steps, this heterocyclization process can also be used to construct six-membered rings (piperidino, morpholino), albeit in lower yields. The ability of 1,2-dibromoethane to brominate N-alkylated 1,8-diaminonaphthalenes is also described. It is shown for the first time that a commercially available 1,8-bis(dimethylamino)naphthalene (DMAN) can be used as a starting material in a heterocyclization reaction, which via a one-pot approach and in a short time can be converted into 1,5-dimethylnaphtho[1,8-bc]-1,5-diazacyclooctane or 1-dimethylamino-8-(pyrrolidin-1-yl)naphthalene.

Supporting Information

 
  • References

  • 1 Alder RW, Bowman PS, Steele WR. S, Winterman DR. J. Chem. Soc., Chem. Commun. 1968; 723
  • 2 Hibbert F, Hunte KP. P. J. Chem. Soc., Perkin Trans. 2 1983; 1895
  • 3 Grech E, Malarski Z, Sobczyk L. Chem. Phys. Lett. 1986; 128: 259
  • 4 Llamas-Saiz AL, Foces-Foces CC, Elguero J. J. Mol. Struct. 1994; 328: 297
  • 5 Pozharskii AF. Russ. Chem. Rev. 1998; 67: 1
  • 6 Pozharskii AF, Ozeryanskii VA. Proton Sponges . In The Chemistry of Functional Groups, The Chemistry of Anilines, Part 2. Rappoport Z. John Wiley & Sons; Chichester: 2007. Chap. 17, 931
  • 7 Ozeryanskii VA, Milov AA, Minkin VI, Pozharskii AF. Angew. Chem. Int. Ed. 2006; 45: 1453
  • 8 Gerlt JA, Kreevoy MM, Cleland WW, Frey PA. Chem. Biol. 1997; 4: 259
  • 9 Perrin CL, Ohta BK. J. Mol. Struct. 2003; 644: 1
  • 10 Anslyn EV, Dougherty DA. Modern Physical Organic Chemistry . University Science Books; Sausalito (CA): 2006: 179
  • 11 Sobzyk L, Grabowski SJ, Krygowski TM. Chem. Rev. 2005; 105: 3513
  • 12 Smith PB, Dye JL, Cheney J, Lehn J.-M. J. Am. Chem. Soc. 1981; 103: 6044
  • 13 Alder RW, East SP. Chem. Rev. 1996; 96: 2097
  • 14 Steed JW, Atwood JL. Supramolecular Chemistry, 2nd ed. John Wiley & Sons; Chichester: 2009
    • 15a Vinogradova OV, Filatova EA, Vistorobskii NV, Pozharskii AF, Borovlev IV, Starikova ZA. Russ. J. Org. Chem. 2006; 42: 338
    • 15b Kachalkina SG, Borodkin GS, Pozharskii AF, Antonov AS, Borodkina IG, Maltsev YF, Filatova EA, Filarowski A, Ozeryanskii VA. Mendeleev Commun. 2015; 25: 182
  • 16 Ozeryanskii VA, Vlasenko MP, Pozharskii AF, Sergeyev S, Maes BU. W, Franck P, Herrebout WA. ChemistrySelect 2017; 2: 9882
  • 17 Filatova EA, Pozharskii AF, Gulevskaya AV, Ozeryanskii VA, Tsybulin SV, Filarowski A. Eur. J. Org. Chem. 2019; 7128
  • 18 Alder RW, Hyland NP, Jeffery JC, Riis-Johannessen T, Riley DJ. Org. Biomol. Chem. 2009; 7: 2704
  • 19 Ozeryanskii VA, Shevchuk DA, Pozharskii AF, Kazheva ON, Chekhlov AN, Dyachenko OA. J. Mol. Struct. 2008; 892: 63
  • 20 Pozharskii AF, Povalyakhina MA, Degtyarev AV, Ryabtsova OV, Ozeryanskii VA, Dyablo OV, Tkachuk AV, Kazheva ON, Chekhlov AN, Dyachenko OA. Org. Biomol. Chem. 2011; 9: 1887
  • 21 Ozeryanskii VA, Vakhromova PA, Pozharskii AF. ARKIVOC 2014; (ii): 333
  • 22 Filatova EA, Pozharskii AF, Gulevskaya AV, Ozeryanskii VA. J. Org. Chem. 2015; 80: 872
  • 23 Shroff R, Svatoš A. Rapid Commun. Mass Spectrom. 2009; 23: 2380
  • 24 Saunders LK, Nowell H, Spencer HC. E, Hatcher LE, Shepherd HJ, Thomas LH, Jones CL, Teat SJ, Raithby PR, Wilson CC. CrystEngComm 2018; 20: 3074
  • 25 Ozeryanskii VA, Pozharskii AF, Koroleva MG, Shevchuk DA, Kazheva ON, Chekhlov AN, Shilov GV, Dyachenko OA. Tetrahedron 2005; 61: 4221
  • 26 Alder RW, Bryce MR, Goode NC, Miller N, Owen J. J. Chem. Soc., Perkin Trans. 1 1981; 2840
  • 27 Maier JP. Helv. Chim. Acta 1974; 57: 994
  • 28 Ozeryanskii VA, Pozharskii AF, Fomchenkov AM. Russ. Chem. Bull. 1998; 47: 313
  • 29 Konstantinchenko AA, Pozharskii AF, Stepanova VN. Russ. J. Org. Chem. 1993; 29: 1437