Synthesis 2021; 53(15): 2602-2611
DOI: 10.1055/s-0040-1706743
feature

Thia-Bridged Triarylamine[4]helicene-Functionalized Polynorbor­nenes as Redox-Active pH-Sensitive Polymers

Michela Lupi
a   Department of Chemistry ‘Ugo Schiff’, University of Florence, Via Della Lastruccia 3–13, Sesto Fiorentino, 50019 Firenze, Italy
,
Stefano Menichetti
a   Department of Chemistry ‘Ugo Schiff’, University of Florence, Via Della Lastruccia 3–13, Sesto Fiorentino, 50019 Firenze, Italy
,
Paola Stagnaro
b   Institute of Chemical Sciences and Technologies (SCITEC) ‘Giulio Natta’, Italian National Research Council, Via De Marini 6, 16149 Genova, Italy
,
Roberto Utzeri
b   Institute of Chemical Sciences and Technologies (SCITEC) ‘Giulio Natta’, Italian National Research Council, Via De Marini 6, 16149 Genova, Italy
,
a   Department of Chemistry ‘Ugo Schiff’, University of Florence, Via Della Lastruccia 3–13, Sesto Fiorentino, 50019 Firenze, Italy
› Author Affiliations
The authors thank MIUR-Italy (‘Progetto Dipartimenti di Eccellenza 2018–2022’ allocated to Department of Chemistry ‘Ugo Schiff’, University of Florence, Italy) for financial support.


Abstract

A series of thia-bridged triarylamine[4]helicene-functionalized polynorbornenes P1, P2, and P3 were synthesized via ring-opening metathesis polymerization (ROMP). The polymers obtained undergo a reversible one-electron oxidation, in both solution and solid state, responding to the pH changes in the surrounding medium showing a clear reversible electrochromic behavior.

Supporting Information



Publication History

Received: 23 December 2020

Accepted after revision: 11 February 2021

Article published online:
11 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem. Rev. 2007; 107: 926
    • 1b Boudrioua A, Chakaroun M, Fischer A. An Introduction to Organic Lasers, 1st ed. ISTE Press – Elsevier; Amsterdam: 2017
    • 2a Yen H.-J, Liou G.-S. J. Mater. Chem. 2010; 20: 9886
    • 2b Su T.-H, Hsiao S.-H, Liou G.-S. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 2085
    • 2c Shirota Y. J. Mater. Chem. 2005; 15: 75
    • 2d Shinde D, Salunke J, Candeias N. Sci. Rep. 2017; 7: 46268
    • 2e Zhou W, Wen Y, Ma L, Liu Y, Zhan X. Macromolecules 2012; 45: 4115
    • 2f Chiykowski VA, Lam B, Du C, Berlinguette CP.. Chem. Commun. 2017; 53: 2367
    • 2g Zheng Y, Zhu X. Org. Mater. 2020; 2: 253
    • 3a Thokala S, Singh SP. ACS Omega 2020; 5: 5608
    • 3b Hüttner S, Sommer M, Steiner U, Thelakkat M. Appl. Phys. Lett. 2010; 96: 073503
    • 3c Salunke J, Guo X, Lin Z, Vale JR, Candeias NR, Nyman M, Dahlström S, Österbacka R, Priimagi A, Chang J, Vivo P. ACS Appl. Energy Mater. 2019; 2: 3021
    • 3d Dheepika R, Shaji A, Imran PM, Nagarajan S. Org. Electron. 2020; 81: 105568
    • 3e Dheepika R, Abhijnakrishna R, Imran PM, Nagarajan S. RSC Adv. 2020; 10: 13043
    • 3f Shaheen SE, Jabbour GE, Kippelen B, Peyghambarian N, Anderson JD, Marder SR, Armstrong NR, Bellmann E, Grubbs RH. Appl. Phys. Lett. 1999; 74: 3212
    • 3g Matsui T, Petrikyte I, Malinauskas T, Domanski K, Daskeviciene M, Steponaitis M, Gratia P, Tress W, Correa-Baena J.-P, Abate A, Hagfeldt A, Grätzel M, Nazeeruddin MK, Getautis V, Saliba M. ChemSusChem 2016; 9: 2567
    • 4a Golriz AA, Suga T, Nishide H, Berger R, Gutmann JS. RSC Adv. 2015; 5: 22947
    • 4b Kolek M, Otteny F, Schmidt P, Muck-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Energy Environ. Sci. 2017; 10: 2334
    • 4c Otteny F, Kolek M, Becking J, Winter M, Bieker P, Esser B. Adv. Energy Mater. 2018; 8: 1802151
    • 4d Acker P, Rzesny L, Marchiori CF. N, Araujo CM, Esser B. Adv. Funct. Mater. 2019; 29: 1906436
    • 4e Esser B. Org. Mater. 2019; 1: 63
    • 4f Otteny F, Studer G, Kolek M, Bieker P, Winter M, Esser B. ChemSusChem 2020; 13: 2232
    • 5a Michinobu T, Inui J, Nishide H. Org. Lett. 2003; 5: 2165
    • 5b Murata H, Takahashi M, Namba K, Takahashi V, Nishide V. J. Org. Chem. 2004; 69: 631
    • 5c Fukuzaki E, Nishide H. J. Am. Chem. Soc. 2006; 128: 996
    • 5d Stolar M. Pure Appl. Chem. 2020; 92: 717
    • 6a Forrester AR, Hay JM, Thomson RH. Organic Chemistry of Stable Free Radicals 1968
    • 6b Casselman MD, Kaur AP, Narayana KA, Elliott CF, Risko C, Odom SA. Phys. Chem. Chem. Phys. 2015; 17: 6905
    • 7a Fukuzaki E, Nishide H. J. Am. Chem. Soc. 2006; 128: 996
    • 7b Bushby RJ, McGill DR, Ng KM, Taylor N. J. Mater. Chem. 1997; 7: 2343
    • 7c Cheng S.-H, Hsiao S.-H, Su T.-H, Liou G.-S. Macromolecules 2005; 38: 307
    • 7d Yen H.-J, Liou G.-S. Polym. Chem. 2018; 9: 3001
    • 7e Murata H, Takahashi M, Namba K, Takahashi N, Nishide H. J. Org. Chem. 2004; 69: 631
    • 7f Oka H. J. Mater. Chem. 2008; 18: 1927
    • 7g Michinobu T, Inui J, Nishide H. Org. Lett. 2003; 5: 2165
    • 7h Maurel V, Jouni M, Baran P, Onofrio N, Gambarelli S, Mouesca J.-M, Djurado D, Dubois L, Jacquot J.-F, Desfonds G, Kulszewicz-Bajer I. Phys. Chem. Chem. Phys. 2012; 14: 1399
    • 7i Oka H, Terane M, Kiyohara Y, Tanaka H. Polyhedron 2007; 26: 1895
    • 7j Bushby RJ, McGill DR, Ng KM, Taylor N. J. Mater. Chem. 1997; 7: 2343
    • 8a Lamanna G, Faggi C, Gasparrini F, Ciogli A, Villani C, Stephens PJ, Devlin FJ, Menichetti S. Chem. Eur. J. 2008; 14: 5747
    • 8b Menichetti S, Cecchi S, Procacci P, Innocenti V, Becucci V, Franco V, Viglianisi C. Chem. Commun. 2015; 51: 11452
    • 8c Menichetti S, Faggi C, Onori M, Piantini S, Ferreira M, Rocchi S, Lupi M, Marin I, Maggini M, Viglianisi C. Eur. J. Org. Chem. 2019; 168
  • 9 Longhi G, Castiglioni E, Villani C, Sabia R, Menichetti S, Viglianisi C, Devlin F, Abbate S. J. Photochem. Photobiol., A 2016; 331: 138
    • 10a Kettner M, Maslyuk VV, Nürenberg D, Seibel J, Gutierrez R, Cuniberti G, Ernst K.-H, Zacharias H. J. Phys. Chem. Lett. 2018; 9: 2025
    • 10b Zhao W.-L, Li M, Lu H.-Y, Chen C.-F. Chem. Commun. 2019; 55: 13793
  • 11 Kiran V, Mathew SP, Cohen SR, Delgado IH, Lacour J, Naaman R. Adv. Mater. 2016; 28: 1957
    • 12a Peng F, Xu J, Zhang Y, He R, Yang W, Cao Y. Polym. Chem. 2019; 10: 1367
    • 12b Sobarzo PA, González AF, Schott E, Tagle LH, Tundidor-Camba A, González-Henríquez C, Jessop IA, Terraza CA. Polymers 2019; 11: 216
    • 12c Liu X, Tan X, Chen Q, Shan H, Liu C, Xu J, Chen Z.-K, Huang W, Xu Z.-X. RSC Adv. 2017; 7: 53604
  • 13 Chen J, Li G, Xie Y, Liao Y, Xiao F, Deng G.-J. Org. Lett. 2015; 17: 5870
  • 14 Menichetti S, Viglianisi C. Tetrahedron 2003; 59: 5523
    • 15a Katafias A, Fenska J. Transition Met. Chem. 2011; 36: 801
    • 15b Murthy AS. N, Reddy KS. J. Chem. Soc., Faraday Trans. 1 1984; 80: 2745
    • 15c Sainsbury M. In Comprehensive Heterocyclic Chemistry, Vol. 3. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 995-1038
    • 15d Sainsbury M. In Rodd’s Chemistry of Carbon Compounds, 2nd ed., Vol. 4. Sainsbury M. Elsevier; Amsterdam: 1998: 575-608
    • 15e McIntyre R, Gerscher H. Ber. Bunsen-Ges. Phys. Chem. 1984; 88: 963
    • 15f Krishna RM, Kurshev V, Kervan L. Phys. Chem. Chem. Phys. 1999; 11: 2833
    • 16a Okada K, Imakura T, Oda M, Murai H. J. Am. Chem. Soc. 1996; 118: 3047
    • 16b Hauck M, Schönhaber J, Zucchero AJ, Hardcastle KI, Müller TJ. J, Bunz UH. F. J. Org. Chem. 2007; 72: 6714
    • 16c Franz AW, Popa LN, Rominger F, Müller TJ. J. Org. Biomol. Chem. 2009; 7: 469
  • 17 Manju T, Manoj N, Braunc AM, Oliveros E. Photochem. Photobiol. Sci. 2012; 11: 1744