Synthesis 2021; 53(05): 848-860
DOI: 10.1055/s-0040-1706570
short review

Palladium-Catalyzed Anti-Markovnikov Oxidation of Aromatic and Aliphatic Alkenes to Terminal Acetals and Aldehydes

Yasuyuki Ura
This study was supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI) [Grant Nos. JP16H01028 (in Precisely Designed Catalysts with Customized Scaffolding), JP23750112, JP25410116, JP18K05122, and JP18H03914], and by The Society of Synthetic Organic Chemistry, Japan (Asahi Kasei Pharma Award).


Abstract

Catalytic anti-Markovnikov (AM) oxidation of terminal alkenes can provide terminally oxyfunctionalized organic compounds. This short review mainly summarizes our recent progress on the Pd-catalyzed AM oxidations of aromatic and aliphatic terminal alkenes to give terminal acetals (oxidative acetalization) and aldehydes (Wacker-type oxidation), along with related reports. These reactions demonstrate the efficacy of the PdCl2(MeCN)2/CuCl/electron-deficient cyclic alkenes/O2 catalytic system. Notably, electron-deficient cyclic alkenes such as p-benzoquinones (BQs) and maleimides are key additives that facilitate nucleophilic attack of oxygen nucleophiles on coordinated terminal alkenes and enhance the AM selectivity. BQs also function to oxidize Pd(0) depending on the reaction conditions. Several other factors that improve the AM selectivity, such as the steric demand of the nucleo­philes, slow substrate addition, and halogen-directing groups, are also discussed.

1 Introduction

2 Anti-Markovnikov Oxidation of Aromatic Alkenes to Terminal Acetals­

3 Anti-Markovnikov Oxidation of Aromatic Alkenes to Aldehydes

4 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Terminal Acetals­

5 Anti-Markovnikov Oxidation of Aliphatic Alkenes to Aldehydes

6 Conclusion



Publication History

Received: 31 August 2020

Accepted after revision: 13 October 2020

Article published online:
12 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Muzart J. Tetrahedron 2007; 63: 7505
  • 2 Dong JJ, Browne WR, Feringa BL. Angew. Chem. Int. Ed. 2015; 54: 734
  • 3 Guo J, Teo P. Dalton Trans. 2014; 43: 6952
  • 4 Baiju TV, Gravel E, Doris E, Namboothiri IN. N. Tetra­hedron Lett. 2016; 57: 3993
  • 5 Takenaka K, Sasai H. Addition Reactions with Formation of Carbon–Oxygen Bonds: (iv) The Wacker Oxidation and Related Reactions. In Comprehensive Organic Synthesis II, 2nd ed., Vol. 7. Knochel P. Elsevier; Amsterdam: 2014: 431-491
  • 6 Michel BW, Steffens LD, Sigman MS. The Wacker Oxidation . In Organic Reactions, Vol. 84. John Wiley & Sons; Hoboken: 2014: 75-413
  • 7 Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
  • 8 Takacs JM, Jiang X.-t. Curr. Org. Chem. 2003; 7: 369
  • 9 Henry PM. The Wacker Oxidation and Related Intermolecular Reactions Involving Oxygen and Other Group 16 Atom Nucleo­philes: The Wacker Oxidation and Related Asymmetric Syntheses. In Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 2. Negishi E.-i. John Wiley & Sons; New York: 2002: 2119-2139
  • 10 Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176
  • 11 Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A. Angew. Chem., Int. Ed. Engl. 1962; 1: 80
  • 12 Baeckvall JE, Akermark B, Ljunggren SO. J. Am. Chem. Soc. 1979; 101: 2411
  • 13 Tsuji J. Synthesis 1984; 369
  • 14 Hintermann L. Wacker-Type Oxidations . In Transition Metals for Organic Synthesis, 2nd ed., Vol. 2. Beller M, Bolm C. Wiley-VCH; Weinheim: 2004: 379-388
  • 15 Cornell CN, Sigman MS. Inorg. Chem. 2007; 46: 1903
  • 16 Keith JA, Henry PM. Angew. Chem. Int. Ed. 2009; 48: 9038
  • 17 Stirling A, Nair NN, Lledos A, Ujaque G. Chem. Soc. Rev. 2014; 43: 4940
  • 18 Kočovský P, Bäckvall J.-E. Chem. Eur. J. 2015; 21: 36
  • 19 Dong JJ, Fañanás-Mastral M, Alsters PL, Browne WR, Feringa BL. Angew. Chem. Int. Ed. 2013; 52: 5561
  • 20 Weiner B, Baeza A, Jerphagnon T, Feringa BL. J. Am. Chem. Soc. 2009; 131: 9473
  • 21 Dong JJ, Harvey EC, Fañanás-Mastral M, Browne WR, Feringa BL. J. Am. Chem. Soc. 2014; 136: 17302
  • 22 Ning X.-S, Wang M.-M, Yao C.-Z, Chen X.-M, Kang Y.-B. Org. Lett. 2016; 18: 2700
  • 23 Wright JA, Gaunt MJ, Spencer JB. Chem. Eur. J. 2006; 12: 949
  • 24 Wickens ZK, Morandi B, Grubbs RH. Angew. Chem. Int. Ed. 2013; 52: 11257
  • 25 Ogura T, Kamimura R, Shiga A, Hosokawa T. Bull. Chem. Soc. Jpn. 2005; 78: 1555
  • 26 Feringa BL. J. Chem. Soc., Chem. Commun. 1986; 909
  • 27 Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
  • 28 Lloyd WG, Luberoff BJ. J. Org. Chem. 1969; 34: 3949
  • 29 Muzart J. Tetrahedron 2005; 61: 5955
  • 30 Hosokawa T, Ataka Y, Murahashi S.-I. Bull. Chem. Soc. Jpn. 1990; 63: 166
  • 31 Hosokawa T, Ohta T, Murahashi S.-I. J. Chem. Soc., Chem. Commun. 1983; 848
  • 32 Hosokawa T, Ohta T, Kanayama S, Murahashi S. J. Org. Chem. 1987; 52: 1758
  • 33 Lai J, Shi X, Dai L. J. Org. Chem. 1992; 57: 3485
  • 34 Hosokawa T, Aoki S, Murahashi S.-I. Synthesis 1992; 558
  • 35 Balija AM, Stowers KJ, Schultz MJ, Sigman MS. Org. Lett. 2006; 8: 1121
  • 36 Chowdhury AD, Lahiri GK. Chem. Commun. 2012; 48: 3448
  • 37 Kumar MA, Swamy P, Naresh M, Reddy MM, Rohitha CN, Prabhakar S, Sarma AV. S, Kumar JR. P, Narender N. Chem. Commun. 2013; 49: 1711
  • 38 Wenzel TT. J. Chem. Soc., Chem. Commun. 1993; 862
  • 39 Dong G, Teo P, Wickens ZK, Grubbs RH. Science 2011; 333: 1609
  • 40 Yamamoto M, Nakaoka S, Ura Y, Kataoka Y. Chem. Commun. 2012; 48: 1165
  • 41 Matsumura S, Sato R, Nakaoka S, Yokotani W, Murakami Y, Kataoka Y, Ura Y. ChemCatChem 2017; 9: 751
  • 42 Denney MC, Smythe NA, Cetto KL, Kemp RA, Goldberg KI. J. Am. Chem. Soc. 2006; 128: 2508
  • 43 Teo P, Wickens ZK, Dong G, Grubbs RH. Org. Lett. 2012; 14: 3237
  • 44 Bourne SL, Ley SV. Adv. Synth. Catal. 2013; 355: 1905
  • 45 Chen J, Che C.-M. Angew. Chem. Int. Ed. 2004; 43: 4950
  • 46 Jiang G, Chen J, Thu H.-Y, Huang J.-S, Zhu N, Che C.-M. Angew. Chem. Int. Ed. 2008; 47: 6638
  • 47 Chen G.-Q, Xu Z.-J, Zhou C.-Y, Che C.-M. Chem. Commun. 2011; 47: 10963
  • 48 Chowdhury AD, Ray R, Lahiri GK. Chem. Commun. 2012; 48: 5497
  • 49 Nakaoka S, Murakami Y, Kataoka Y, Ura Y. Chem. Commun. 2016; 52: 335
  • 50 Jin SJ, Arora PK, Sayre LM. J. Org. Chem. 1990; 55: 3011
  • 51 Hosokawa T, Makabe Y, Shinohara T, Murahashi S.-I. Chem. Lett. 1985; 14: 1529
  • 52 Kongkathip B, Sookkho R, Kongkathip N. Chem. Lett. 1985; 14: 1849
  • 53 Speziali MG, Costa VV, Robles-Dutenhefner PA, Gusevskaya EV. Organometallics 2009; 28: 3186
  • 54 Komori S, Yamaguchi Y, Kataoka Y, Ura Y. J. Org. Chem. 2019; 84: 3093
  • 55 Lerch MM, Morandi B, Wickens ZK, Grubbs RH. Angew. Chem. Int. Ed. 2014; 53: 8654
  • 56 Chu CK, Ziegler DT, Carr B, Wickens ZK, Grubbs RH. Angew. Chem. Int. Ed. 2016; 55: 8435
  • 57 Kim KE, Li J, Grubbs RH, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 13179
  • 58 Jiang Y.-Y, Zhang Q, Yu H.-Z, Fu Y. ACS Catal. 2015; 5: 1414
  • 59 Komori S, Yamaguchi Y, Murakami Y, Kataoka Y, Ura Y. ChemCatChem 2020; 12: 3946