Synlett 2021; 32(02): 95-101
DOI: 10.1055/s-0040-1706472
synpacts

Photo-NHC Catalysis: Accessing Ketone Photochemistry with Carboxylic Acid Derivatives

Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany   Email: matthew.hopkinson@fu-berlin.de
,
Andreas Mavroskoufis
› Author Affiliations
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research foundation); Project-ID 420535461.Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 420535461.


Abstract

Excitation of carbonyl groups is one of the most widely employed activation modes in photochemistry. Many synthetically important transformations, however, are successful only with aldehydes and ketones; substrates at the carboxylic acid oxidation level remain underrepresented. We have developed a conceptually novel strategy for enabling ‘ketone-like’ photochemistry with carboxylic acid derivatives that employs an N-heterocyclic carbene (NHC) organocatalyst. Using this ‘Photo-NHC’ catalysis approach, a proof-of-concept photoenolization/Diels–Alder (PEDA) reaction between acid fluorides and trifluoroacetophenones was developed. Stoichiometric studies and TD-DFT calculations supported a mechanistic scenario in which the NHC influences the absorption wavelength and inherent photochemical reactivity of the carbonyl group during the catalytic cycle.

1 Introduction

2 Photo-NHC Catalysis

3 Conclusions



Publication History

Received: 18 August 2020

Accepted after revision: 27 August 2020

Article published online:
28 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected reviews:
    • 1a MacMillan DW. C. Nature 2008; 455: 304
    • 1b Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 1c Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature 2011; 475: 183
    • 1d Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013

      Seminal early reports:
    • 2a List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
    • 2b Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 2c Beeson TD, Mastracchio A, Hong J.-B, Ashton K, MacMillan DW. C. Science 2007; 316: 582

    • Selected reviews:
    • 2d Enamine catalysis: Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 2e Iminium catalysis: Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 2f SOMO catalysis: Mečiarová M, Tisovský P, Šebesta R. New J. Chem. 2016; 40: 4855

      Seminal early reports:
    • 3a Wenzel AG, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 12964
    • 3b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404

    • Selected reviews:
    • 3c Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 3d Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518

      Selected reviews:
    • 4a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 4b Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 4c Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 4d Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 4e Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 4f Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 4g Zhang C, Hooper JF, Lupton DW. ACS Catal. 2017; 7: 2583

      Reviews:
    • 5a Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 5b Zou Y.-Q, Hörmann FM, Bach T. Chem. Soc. Rev. 2018; 47: 278

      Reviews:
    • 6a Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
    • 6b Garrido-Castro AF, Maestro MC, Alemán J. Tetrahedron Lett. 2018; 59: 1286

      Reviews on the combination of photoredox catalysis with other catalysis modes:
    • 7a Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 7b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 7c Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 8 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 9 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
  • 10 Review on EDA complexes in organic synthesis: Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
  • 11 Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
    • 12a Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
    • 12b Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
    • 12c Bonilla P, Rey YP, Holden CM, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 12819
    • 12d Perego LA, Bonilla P, Melchiorre P. Adv. Synth. Catal. 2020; 362: 302
    • 13a Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368

    • Selected further examples involving direct excitation of organocatalytic intermediates:
    • 13b Bauer A, Westkämper F, Grimme S, Bach T. Nature 2005; 436: 1139
    • 13c Vallavoju N, Selvakumar S, Jockusch S, Sibi MP, Sivaguru J. Angew. Chem. Int. Ed. 2014; 53: 5604
    • 13d Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
    • 13e Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
    • 13f Cuadros S, Horwitz MA, Schweitzer-Chaput B, Melchiorre P. Chem. Sci. 2019; 10: 5484
    • 13g Spinnato D, Schweitzer-Chaput B, Goti G, Ošeka M, Melchiorre P. Angew. Chem. Int. Ed. 2020; 59: 9485
    • 13h Rigotti T, Mas-Ballesté R, Alemán J. ACS Catal. 2020; 10: 5335
    • 13i Li X, Jandl C, Bach T. Org. Lett. 2020; 22: 3618
    • 13j Spiliopoulou N, Nikitas NF, Kokotos CG. Green Chem. 2020; 22: 3539

      Selected reviews:
    • 14a Schaffner K, Jeger O. Tetrahedron 1974; 30: 1891
    • 14b Wagner PJ. Acc. Chem. Res. 1989; 22: 83
    • 14c Bach T. Synthesis 1998; 683
    • 14d Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 14e Chemical Photocatalysis . König B. De Gruyter; Berlin: 2013
    • 14f Kärkäs MD, Porco Jr. JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 14g Chen C. Org. Biomol. Chem. 2016; 14: 8641
    • 14h Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 14i Oelgemöller M, Hoffmann N. Org. Biomol. Chem. 2016; 14: 7392
    • 14j D’Auria M. Photochem. Photobiol. Sci. 2019; 18: 2297
  • 15 Coyle JD. Chem. Rev. 1978; 78: 97

    • Example of a Norrish type II elimination with aromatic esters:
    • 16a DeCosta DP, Bennett AK, Pincock JA. J. Am. Chem. Soc. 1999; 121: 3785

    • Reviews on Norrish-type reactivity with phthalimide derivatives:
    • 16b Kanaoka Y. Acc. Chem. Res. 1978; 11: 407
    • 16c Yoon UC, Mariano PS. Acc. Chem. Res. 2001; 34: 523
    • 16d Oelgemöller M, Griesbeck AG. J. Photochem. Photobiol., C 2002; 3: 109
    • 16e McDermott G, Yoo DJ, Oelgemöller M. Heterocycles 2005; 65: 2221

      Reviews:
    • 17a Mavroskoufis A, Jakob M, Hopkinson MN. ChemPhotoChem 2020; in press; DOI: 10.1002/cptc.202000120
    • 17b Liu Q, Chen X.-Y. Org. Chem. Front. 2020; 7: 2082

    • Selected examples:
    • 17c DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 17d Yang W, Hu W, Dong X, Li X, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15783
    • 17e Yoshioka E, Inoue M, Nagoshi Y, Kobayashi A, Mizobuchi R, Kawashima A, Kohtani S, Miyabe H. J. Org. Chem. 2018; 83: 8962
    • 17f Dai L, Xia Z.-H, Gao Y.-Y, Gao Z.-H, Ye S. Angew. Chem. Int. Ed. 2019; 58: 18124
    • 17g Dai L, Ye S. Org. Lett. 2020; 22: 986
    • 17h Xia Z.-H, Dai L, Gao Z.-H, Ye S. Chem. Commun. 2020; 56: 1525
    • 17i Davies AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew. Chem. Int. Ed. 2020; 59: 9143
    • 17j Bayly AA, McDonald BR, Mrksich M, Scheidt KA. Proc. Natl. Acad. Sci. U.S.A. 2020; 117: 13261
    • 17k Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; in press; DOI: 10.1002/anie.202008040
    • 17l Example of light-mediated NHC organocatalysis without an additional photocatalyst: Gao Z.-H, Xia Z.-H, Dai L, Ye S. Adv. Synth. Catal. 2020; 362: 1819
  • 18 Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Angew. Chem. Int. Ed. 2020; 59: 3190

    • First report:
    • 19a Yang NC, Rivas C. J. Am. Chem. Soc. 1961; 83: 2213

    • Selected reviews:
    • 19b Sammes PG. Tetrahedron 1976; 32: 405
    • 19c Klán P, Wirz J, Gudmundsdottir A. In CRC Handbook of Organic Photochemistry and Photobiology, 3rd ed. Griesbeck A. CRC; Boca Raton: 2012: 627
    • 19d Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926

      An enantioselective PEDA reaction of benzophenones has been reported using hydrogen-bonding organocatalysts:
    • 20a Dell’Amico L, Vega-Peñaloza A, Cuadros S, Melchiorre P. Angew. Chem. Int. Ed. 2016; 55: 3313

    • Selected examples of photoenolization of benzophenones:
    • 20b Takaki K, Fujii T, Yonemitsu H, Fujiwara M, Komeyama K, Yoshida H. Tetrahedron Lett. 2012; 53: 3974
    • 20c Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
    • 20d Yuan X, Dong S, Liu Z, Wu G, Zou C, Ye J. Org. Lett. 2017; 19: 2322
    • 20e Ide T, Masuda S, Kawato Y, Egami H, Hamashima Y. Org. Lett. 2017; 19: 4452
    • 20f Dell’Amico L, Fernández-Alvarez VM, Maseras F, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 3304
    • 20g Cuadros S, Dell’Amico L, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 11875
    • 20h Review: Cuadros S, Melchiorre P. Eur. J. Org. Chem. 2018; 2884
    • 21a Janssen-Müller D, Singha S, Olyschläger T, Daniliuc CG, Glorius F. Org. Lett. 2016; 18: 4444
    • 21b Chen D.-F, Rovis T. Synthesis 2017; 49: 293
    • 21c Wang H, Chen X, Li Y, Wang J, Wu S, Xue W, Yang S, Chi YR. Org. Lett. 2018; 20: 333
    • 21d Hu Y, Pan D, Cong L, Yao Y, Yu C, Li T, Yao C. ChemistrySelect 2018; 3: 1708